Thermal aggregation of a model allosteric protein in different conformational states

2009 ◽  
Vol 44 (2) ◽  
pp. 156-162 ◽  
Author(s):  
Marjan Sabbaghian ◽  
Azadeh Ebrahim-Habibi ◽  
Mohsen Nemat-Gorgani
2011 ◽  
Vol 49 (4) ◽  
pp. 806-813 ◽  
Author(s):  
Marjan Sabbaghian ◽  
Azadeh Ebrahim-Habibi ◽  
Saman Hosseinkhani ◽  
Atiyeh Ghasemi ◽  
Mohsen Nemat-Gorgani

2021 ◽  
Vol 64 (2) ◽  
pp. 1180-1196
Author(s):  
David Vanda ◽  
Vittorio Canale ◽  
Severine Chaumont-Dubel ◽  
Rafał Kurczab ◽  
Grzegorz Satała ◽  
...  

1975 ◽  
Vol 145 (3) ◽  
pp. 417-429 ◽  
Author(s):  
J E Barnett ◽  
G D Holman ◽  
R A Chalkley ◽  
K A Munday

6-O-methyl-, 6-O-propyl-, 6-O-pentyl- and 6-O-benzyl-D-galactose, and 6-O-methyl-, 6-O-propyl- and 6-O-pentyl-D-glucose inhibit the glucose-transport system of the human erythrocyte when added to the external medium. Penetration of 6-O-methyl-D-galactose is inhibited by D-glucose, suggesting that it is transported by the glucose-transport system, but the longer-chain 6-O-alkyl-D-galactoses penetrate by a slower D-glucose-insensitive route at rates proportional to their olive oil/water partition coefficients. 6-O-n-Propyl-D-glucose and 6-O-n-propyl-D-galactose do not significantly inhibit L-sorbose entry or D-glucose exit when present only on the inside of the cells whereas propyl-beta-D-glucopyranoside, which also penetrates the membrane slowly by a glucose-insensitive route, only inhibits L-sorbose entry or D-glucose exit when present inside the cells, and not when on the outside. The 6-O-alkyl-D-galactoses, like the other nontransported C-4 and C-6 derivatives, maltose and 4,6-O-ethylidene-D-glucose, protect against fluorodinitrobenzene inactivation, whereas propyl beta-D-glucopyranoside stimulates the inactivation. Of the transported sugars tested, those modified at C-1, C-2 and C-3 enhance fluorodinitrobenzene inactivation, where those modified at C-4 and C-6 do not, but are inert or protect against inactivation. An asymmetric mechanism is proposed with two conformational states in which the sugar binds to the transport system so that C-4 and C-6 are in contact with the solvent on the outside and C-1 is in contact with the solvent on the inside of the cell. It is suggested that fluorodinitrobenzene reacts with the form of the transport system that binds sugars at the inner side of the membrane. An Appendix describes the theoretical basis of the experimental methods used for the determination of kinetic constants for non-permeating inhibitors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingmin Yuan ◽  
Zongyang Lv ◽  
Melanie J. Adams ◽  
Shaun K. Olsen

AbstractE1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1–E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1–E2–Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1–E2–ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1–E2–Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.


2021 ◽  
pp. 129985
Author(s):  
Lu Lu ◽  
Zhen Yang ◽  
Xiao-Na Guo ◽  
Jun-Jie Xing ◽  
Ke-Xue Zhu

Sign in / Sign up

Export Citation Format

Share Document