conformational state
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 62)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Fatima S. Ugur ◽  
Mark J. S. Kelly ◽  
Danica Galonic Fujimori

The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 demethylases have a number of accessory domains, two of which, ARID and PHD1, lie within the catalytic domain. KDM5C, which has a unique role in neural development, harbors a number of mutations adjacent to its accessory domains that cause X-linked intellectual disability (XLID). The roles of these accessory domains remain unknown, limiting an understanding of how XLID mutations affect KDM5C activity. We find that while the ARID and PHD1 domains are required for efficient nucleosome demethylation, the PHD1 domain alone has an inhibitory role in KDM5C catalysis. We further find that binding of the H3 tail to PHD1 is coupled to the recognition of linker DNA by KDM5C. Our data suggests a model in which the PHD1 domain regulates DNA recognition by the ARID domain based on available substrate cues. In this model, recognition of distinct chromatin features is coupled to a conformational rearrangement of the ARID and PHD1 domains, which in turn modulates the positioning of the catalytic domain for efficient nucleosome demethylation. Importantly, we find that XLID mutations adjacent to the ARID and PHD1 domains alter the conformational state of these domains to enhance DNA binding. This results in the loss of specificity in chromatin recognition by KDM5C and renders catalytic activity sensitive to inhibition by linker DNA. Our findings suggest a unifying model by which XLID mutations alter chromatin recognition and enable euchromatin-specific dysregulation of demethylation by KDM5C.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Kazuyuki Akasaka ◽  
Akihiro Maeno

Admitting the “Native”, “Unfolded” and “Fibril” states as the three basic generic states of proteins in nature, each of which is characterized with its partial molar volume, here we predict that the interconversion among these generic states N, U, F may be performed simply by making a temporal excursion into the so called “the high-pressure regime”, created artificially by putting the system under sufficiently high hydrostatic pressure, where we convert N to U and F to U, and then back to “the low-pressure regime” (the “Anfinsen regime”), where we convert U back to N (U→N). Provided that the solution conditions (temperature, pH, etc.) remain largely the same, the idea provides a general method for choosing N, U, or F of a protein, to a great extent at will, assisted by the proper use of the external perturbation pressure. A successful experiment is demonstrated for the case of hen lysozyme, for which the amyloid fibril state F prepared at 1 bar is turned almost fully back into its original native state N at 1 bar by going through the “the high-pressure regime”. The outstanding simplicity and effectiveness of pressure in controlling the conformational state of a protein are expected to have a wide variety of applications both in basic and applied bioscience in the future.


2021 ◽  
Author(s):  
Johanna R. de Wolf ◽  
Anki Lenferink ◽  
Aufried T. M. Lenferink ◽  
Cees Otto ◽  
Nienke Bosschaart

2021 ◽  
pp. 167422
Author(s):  
Raji E. Joseph ◽  
Jacques Lowe ◽  
D. Bruce Fulton ◽  
John R. Engen ◽  
Thomas E. Wales ◽  
...  

2021 ◽  
Author(s):  
Jessica Hong ◽  
Hyung Joon Kwon ◽  
Raul Cachau ◽  
Catherine Z Chen ◽  
Kevin John Butay ◽  
...  

With the emergence of SARS-CoV-2 variants, there is urgent need to develop broadly neutralizing antibodies. Here, we isolate two VHH nanobodies (7A3 and 8A2) from dromedary camels by phage display, which have high affinity for the receptor-binding domain (RBD) and broad neutralization activities against SARS-CoV-2 and its emerging variants. Cryo-EM complex structures reveal that 8A2 binds the RBD in its up mode and 7A3 inhibits receptor binding by uniquely targeting a highly conserved and deeply buried site in the spike regardless of the RBD conformational state. 7A3 at a dose of ≥5 mg/kg efficiently protects K18-hACE2 transgenic mice from the lethal challenge of B.1.351 or B.1.617.2, suggesting that the nanobody has promising therapeutic potentials to curb the COVID-19 surge with emerging SARS-CoV-2 variants.


2021 ◽  
Author(s):  
Geraldine Vilmen ◽  
Anna C Smith ◽  
Hector Cervera Benet ◽  
Rajni Kant Shukla ◽  
Ross C Larue ◽  
...  

Infection of rhesus macaques with simian-human immunodeficiency viruses (SHIVs) is the preferred model system for vaccine development because SHIVs encode HIV-1 envelope glycoproteins (Env) – a key target of HIV-1 neutralizing antibodies. Since the goal of vaccines is to prevent new infections, SHIVs encoding circulating HIV-1 Env are desired as challenge viruses. Development of such biologically relevant SHIVs has been challenging as they fail to infect rhesus macaques, mainly because most circulating HIV-1 Env do not use rhesus CD4 (rhCD4) receptor for viral entry. Most primary HIV-1 Env exist in a closed conformation and occasionally transit to downstream, open conformation through an obligate intermediate conformation. Here, we provide genetic evidence that open Env conformations can overcome the rhCD4 entry barrier and increase replication of SHIVs in rhesus lymphocytes. Consistent with prior studies, we found that circulating HIV-1 Env do not use rhCD4 efficiently for viral entry. However, using HIV-1 Env with single amino acid substitutions that alter their conformational state, we found that transitions to intermediate and open Env conformation allow usage of physiological levels of rhCD4 for viral entry. We engineered these single amino acid substitutions in the transmitted/founder HIV-1BG505 Env encoded by SHIV-BG505 and found that open Env conformation enhances SHIV replication in rhesus lymphocytes. Lastly, CD4-mediated SHIV pull-down, sensitivity to soluble CD4, and fusogenicity assays indicated that open Env conformation promotes efficient rhCD4 binding and viral-host membrane fusion. These findings identify conformational state of HIV-1 Env as a major determinant for rhCD4 usage, viral fusion, and SHIV replication.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009286
Author(s):  
Natália Teruel ◽  
Olivier Mailhot ◽  
Rafael J. Najmanovich

The SARS-CoV-2 Spike protein needs to be in an open-state conformation to interact with ACE2 to initiate viral entry. We utilise coarse-grained normal mode analysis to model the dynamics of Spike and calculate transition probabilities between states for 17081 variants including experimentally observed variants. Our results correctly model an increase in open-state occupancy for the more infectious D614G via an increase in flexibility of the closed-state and decrease of flexibility of the open-state. We predict the same effect for several mutations on glycine residues (404, 416, 504, 252) as well as residues K417, D467 and N501, including the N501Y mutation recently observed within the B.1.1.7, 501.V2 and P1 strains. This is, to our knowledge, the first use of normal mode analysis to model conformational state transitions and the effect of mutations on such transitions. The specific mutations of Spike identified here may guide future studies to increase our understanding of SARS-CoV-2 infection mechanisms and guide public health in their surveillance efforts.


2021 ◽  
Author(s):  
Ka Ying Sharon Hung ◽  
Sven Klumpe ◽  
Markus R. Eisele ◽  
Suzanne Elsasser ◽  
Geng Tian ◽  
...  

The proteasome is the principal cellular protease, and recognizes target proteins that have been covalently marked by ubiquitin chains. The ubiquitin signal is subject to rapid editing at the proteasome, allowing it to reject substrates based on topological features of their attached ubiquitin chains. Editing is mediated by a key regulator of the proteasome, deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome–both by deubiquitinating proteasome-bound ubiquitin conjugates, and through a noncatalytic effect that does not involve deubiquitination. We report mutants in both Ubp6 and proteasome subunit Rpt1 that abrogate Ubp6 activation. The Ubp6 mutations fall within its ILR element, defined here, which is conserved from yeast to mammals. The ILR is a component of the BL1 blocking loop, other parts of which obstruct ubiquitin access to the catalytic groove in free Ubp6. Rpt1 docking at the ILR opens the catalytic groove by rearranging not only BL1 but also a novel network of three directly interconnected active-site-blocking loops. Ubp6 activation and noncatalytic proteasome inhibition by Ubp6 are linked in that they were eliminated by the same Ubp6 and Rpt1 mutations. Ubp6 and ubiquitin together drive the proteasome into a unique conformational state associated with proteasome inhibition. Our results identify a multicomponent allosteric switch that exerts simultaneous control over the activity of both Ubp6 and the proteasome, and suggest that their active states are in general mutually exclusive. The findings lead to a new paradigm for allosteric control of deubiquitinating enzymes.


Sign in / Sign up

Export Citation Format

Share Document