glucose transport system
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 5)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinyang Li ◽  
Qian Liu ◽  
Jingen Li ◽  
Liangcai Lin ◽  
Xiaolin Li ◽  
...  

Abstract Background Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affinity glucose transporters HGT-1/HGT-2, which play diverse roles in glucose transport, carbon metabolism, and cellulase expression regulation. However, the regulation of this dual-transporter system in response to environmental glucose fluctuation is not yet clear. Results In this study, we report that a regulation module consisting of a downstream transcription factor COL-26 and an upstream non-transporting glucose sensor RCO-3 regulates the dual-affinity glucose transport system in N. crassa. COL-26 directly binds to the promoter regions of glt-1, hgt-1, and hgt-2, whereas RCO-3 is an upstream factor of the module whose deletion mutant resembles the Δcol-26 mutant phenotypically. Transcriptional profiling analysis revealed that Δcol-26 and Δrco-3 mutants had similar transcriptional profiles, and both mutants had impaired response to a glucose gradient. We also showed that the AMP-activated protein kinase (AMPK) complex is involved in regulation of the glucose transporters. AMPK is required for repression of glt-1 expression in starvation conditions by inhibiting the activity of RCO-3. Conclusions RCO-3 and COL-26 form an external-to-internal module that regulates the glucose dual-affinity transport system. Transcription factor COL-26 was identified as the key regulator. AMPK was also involved in the regulation of the dual-transporter system. Our findings provide novel insight into the molecular basis of glucose uptake and signaling in filamentous fungi, which may aid in the rational design of fungal strains for industrial purposes.


2020 ◽  
Author(s):  
Jinyang Li ◽  
Qian Liu ◽  
Jingen Li ◽  
Liangcai Lin ◽  
Xiaolin Li ◽  
...  

Abstract Background Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affinity glucose transporters HGT-1/HGT-2, which play diverse roles in glucose transport, carbon metabolism, and cellulase expression regulation. However, the regulation of this dual-transporter system in response to environmental glucose fluctuation is not yet clear.Results In this study, we report that a regulation module consisting of a downstream transcription factor COL-26 and an upstream non-transporting glucose sensor RCO-3 regulates the dual-affinity glucose transport system in N. crassa. COL-26 directly binds to the promoter regions of glt-1, hgt-1, and hgt-2, whereas RCO-3 is an upstream factor of the module whose deletion mutant resembles the Δcol-26 mutant phenotypically. Transcriptional profiling analysis revealed that Δcol-26 and Δrco-3 mutants had similar transcriptional profiles, and both mutants had impaired response to a glucose gradient. We also showed that the AMP-activated protein kinase (AMPK) complex is involved in regulation of the glucose transporters. AMPK is required for repression of glt-1 expression in starvation conditions by inhibiting the activity of RCO-3.Conclusions RCO-3 and COL-26 form an external-to-internal module that regulates the glucose dual-affinity transport system. Transcription factor COL-26 was identified as the key regulator. AMPK was also involved in the regulation of the dual transporter system. Our findings provide novel insight into the molecular basis of glucose uptake and signaling in filamentous fungi, which may aid in the rational design of fungal strains for industrial purposes.


2020 ◽  
Author(s):  
Yibo Xiao ◽  
Jianying Guo ◽  
Huachang Zhu ◽  
Anwar Muhammad ◽  
Haiteng Deng ◽  
...  

Abstract Background: The yield of microalgae biomass is the key to affect the accumulation of fatty acids. A few of microalgae can assimilate organic carbon to improve biomass yield. In mixotrophic cultivation, organic carbon source and light energy exist simultaneously. The preference of the main energy source by microalgae determines the biomass yield. Auxenochlorella protothecoides is an oleaginous mixotrophic microalga that can efficiently assimilate glucose and accumulate a large amount of biomass and fatty acids. The current study focused on the effect of light on the growth and glucose assimilation of Auxenochlorella protothecoides.Results: In this study, we found that the uptake and metabolism of glucose could be inhibited by light, resulting in a reduction of biomass growth and lipid accumulation. Comparative proteomics of A. protothecoides grown under illumination and in the dark revealed that glucose-3-phosphate (G3P) produced in the dark reaction of photosynthesis could reversibly inhibit the glycolysis pathway and thus glucose metabolism. Moreover, the increase of NADH levels and redox potential of the medium under illumination might inhibit the activity of the glucose transport system and subsequently reduce glucose uptake.Conclusions: The regulatory mechanism by which illumination controls glucose assimilation and biomass accumulation in A. protothecoides was elucidated for the first time, which will facilitate further studies on the complex mechanisms underlying the transition from autotrophy to heterotrophy for improving biomass accumulation.


2020 ◽  
Vol 318 (2) ◽  
pp. R245-R255
Author(s):  
Marina Subramaniam ◽  
Cole B. Enns ◽  
Khanh Luu ◽  
Lynn P. Weber ◽  
Matthew E. Loewen

The mucosal-to-serosal flux of 14C 3- O-methyl-d-glucose was compared against the electrogenic transport of d-glucose across ex vivo intestinal segments of Nile tilapia, rainbow trout, and pig in Ussing chambers. The difference in affinities ( Km “fingerprints”) between pig flux and electrogenic transport of glucose, and the absence of this difference in tilapia and trout, suggest two absorptive pathways in the pig and one in the fish species examined. More specifically, the total mucosal-to-serosal flux revealed a super high-affinity, high-capacity (sHa/Hc) total glucose transport system in tilapia; a super high-affinity, low-capacity (sHa/Lc) total glucose transport system in trout and a low-affinity, low-capacity (La/Lc) total glucose transport system in pig. Comparatively, electrogenic glucose absorption revealed similar Km in both fish species, with a super high-affinity, high capacity (sHa/Hc) system in tilapia; a super high-affinity/super low-capacity (sHa/sLc) system in trout; but a different Km fingerprint in the pig, with a high-affinity, low-capacity (Ha/Lc) system. This was supported by different responses to inhibitors of sodium-dependent glucose transporters (SGLTs) and glucose transporter type 2 (GLUT2) administered on the apical side between species. More specifically, tilapia flux was inhibited by SGLT inhibitors, but not the GLUT2 inhibitor, whereas trout lacked response to inhibitors. In contrast, the pig responded to inhibition by both SGLT and GLUT2 inhibitors with a higher expression of GLUT2. Altogether, it would appear that two pathways are working together in the pig, allowing it to have continued absorption at high glucose concentrations, whereas this is not present in both tilapia and trout.


2020 ◽  
Vol 78 (1) ◽  
Author(s):  
Romain Laurian ◽  
Cécile Jacot-des-Combes ◽  
Fabiola Bastian ◽  
Karine Dementhon ◽  
Pascale Cotton

ABSTRACT During Candida macrophage interactions, phagocytosed yeast cells feed in order to grow, develop hyphae and escape. Through numerous proteomic and transcriptomic studies, two metabolic phases have been described. A shift to a starvation mode is generally identified as early as one-hour post phagocytosis, followed by a glycolytic growth mode after C. albicans escaped from the macrophage. Healthy macrophages contain low amounts of glucose. To determine if this carbon source was sensed and metabolized by the pathogen, we explored the transcription level of a delimited set of key genes expressed in C. albicans cells during phagocytosis by macrophages, at an early stage of the interaction. This analysis was performed using a technical digital droplet PCR approach to quantify reliably the expression of carbon metabolic genes after 30 min of phagocytosis. Our data confirm the technique of digital droplet PCR for the detection of C. albicans transcripts using cells recovered after a short period of phagocytosis. At this stage, carbon metabolism is clearly oriented towards the use of alternative sources. However, the activation of high-affinity glucose transport system suggests that the low amount of glucose initially present in the macrophages is detected by the pathogen.


2014 ◽  
Vol 46 (05) ◽  
pp. 341-347 ◽  
Author(s):  
H. Hill ◽  
J. Grams ◽  
R. Walton ◽  
J. Liu ◽  
D. Moellering ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document