Design, development and validation of guar gum based pH sensitive drug delivery carrier via graft copolymerization reaction using microwave irradiations

2019 ◽  
Vol 138 ◽  
pp. 278-291 ◽  
Author(s):  
Arti Mahto ◽  
Sumit Mishra
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Pooja Sharma ◽  
Anuj Chawla ◽  
Pravin Pawar

The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture and further coated with Eudragit S-100 by dip immerse method. Thein vitrodrug release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4 with or without rat caecal content to simulate GIT conditions. Surface morphology and cross-sectional view of the tablets were visualized by scanning electron microscopy (SEM). All prepared batches were in compliance with the pharmacopoeial standards. The tablets which are compression coated with HPC followed by Eudragit S-100 coated showed highestin vitrodrug release of 98.10% in presence of rat caecal content. The SEM of tablets suggested that the number of pores got increased in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study suggested that the lag time depends upon the coating concentrations of polymers. A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated tablets of naproxen were promising delivery for colon targeting.


RSC Advances ◽  
2015 ◽  
Vol 5 (97) ◽  
pp. 80005-80013 ◽  
Author(s):  
Gowrav M. P. ◽  
Umme Hani ◽  
Hosakote G. Shivakumar ◽  
Riyaz Ali M. Osmani ◽  
Atul Srivastava

The purpose of this study was to prepare pH-sensitive pellets using an extrusion-spheronization pelletization (ESP) technique.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (01) ◽  
pp. 30-41
Author(s):  
F. S. Dasankoppa ◽  
◽  
N.G.N Swamy

The poor bioavailability and therapeutic response exhibited by the conventional eye drops due to rapid corneal loss is overcome by the use of ion-activated gel forming systems that are instilled as drops;these undergo gelation in cul-de-sac mode. The present study describes the design, development and evaluation of in situ ophthalmic drug delivery of antibacterial agent, linezolid, based on ion-activated guar gum derivatives. Novel polymers such as Cationic guar with hydroxypropyl guar are being used as gelling as well as viscosity enhancing agents. Differential scanning calorimetric studies have revealed that linezolid is compatible with all the excipients in the formulation. The study also aims at rheological characterization, effect of sterilization (moist heat) and effect of aging on the viscosity of in situ gels by calculating consistency index (K), flow behaviour index (n value) using power law model. The in vitro drug diffusion study for the developed formulations has also been carried out. The formulation CGHPG2,exhibiting good physical stability subsequent to sterilization and storage and further retaining the consistency index (K) and flow behavior index (n value), was chosen as the optimized formulation. The gel formed in situ revealed the sustained release of the drug for up to 12 hrs. Stability data recorded over a period of 6 months at elevated temperature conditions revealed the formulation to be stable. In vivo ocular toxicity studies revealed non irritant and non toxic nature of the formulation. Therefore, the developed guar gum derivative based ophthalmic in situ gel by virtue of its prolonged corneal residence time and sustained drug release could be considered a viable alternative to the conventional eye drop formulation in achieving enhanced bioavailability.


Sign in / Sign up

Export Citation Format

Share Document