scholarly journals Early-life status epilepticus induces long-term deficits in anxiety and spatial learning in mice

2017 ◽  
Vol 04 (01) ◽  
pp. 036-045
Author(s):  
Gregory Smith ◽  
Nowrin Ahmed ◽  
Erin Arbuckle ◽  
Joaquin Lugo

Abstract Background One of the most devastating aspects of developmental epilepsy is the long-term impact on behavior. Children with epilepsy show a high co-morbidity with anxiety disorders and autism. Methods To examine whether early-life status epilepticus results in altered anxiety, repetitive behavior, social behavior, and learning and memory, we induced status epilepticus in male C57BL/6 mice on postnatal day (PD) 10. The mice received intraperitoneal injections of either kainic acid (2 mg/kg) or 0.9% normal saline. We also included a nontreated control group. Kainic acid induced status epilepticus for approximately 1.5 h. At PD60, the adult mice were then tested in a battery of behavioral tasks, including open field activity, elevated-plus maze, light-dark test, marble burying, social chamber, social partition, conditioned fear, novel object recognition, and Morris water maze. Results The early-life seizure group showed consistent increases in anxiety in the open field test (p < 0.05), elevated plus maze (p < 0.05), and light-dark task (p < 0.01). The seizure group showed significant (p < 0.01) impairment in the Morris water maze. There were no differences observed in marble burying, social partition, social chamber, novel object recognition, or delay fear conditioning tasks. Conclusions These results demonstrate that a single insult of status epilepticus during the neonatal period is sufficient to cause specific, long-term impairments in anxiety and spatial learning.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1452
Author(s):  
Conner D. Reynolds ◽  
Taylor S. Jefferson ◽  
Meagan Volquardsen ◽  
Ashvini Pandian ◽  
Gregory D. Smith ◽  
...  

Background: The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects.  Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. Methods: The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. Results: Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. Conclusions: These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1452
Author(s):  
Conner D. Reynolds ◽  
Taylor S. Jefferson ◽  
Meagan Volquardsen ◽  
Ashvini Pandian ◽  
Gregory D. Smith ◽  
...  

Background: The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects.  Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. Methods: The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. Results: Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. Conclusions: These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction.


F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1452 ◽  
Author(s):  
Conner D. Reynolds ◽  
Taylor S. Jefferson ◽  
Meagan Volquardsen ◽  
Ashvini Pandian ◽  
Gregory D. Smith ◽  
...  

Background: The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects.  Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. Methods: The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. Results: Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. Conclusions: These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction.


2020 ◽  
Vol 178 (2) ◽  
pp. 347-357
Author(s):  
Muhammad M Hossain ◽  
Abdelmadjid Belkadi ◽  
Sara Al-Haddad ◽  
Jason R Richardson

Abstract Deficits in learning and memory are often associated with disruption of hippocampal neurogenesis, which is regulated by numerous processes, including precursor cell proliferation, survival, migration, and differentiation to mature neurons. Recent studies demonstrate that adult born neurons in the dentate gyrus (DG) in the hippocampus can functionally integrate into the existing neuronal circuitry and contribute to hippocampal-dependent learning and memory. Here, we demonstrate that relatively short-term deltamethrin exposure (3 mg/kg every 3 days for 1 month) inhibits adult hippocampal neurogenesis and causes deficits in learning and memory in mice. Hippocampal-dependent cognitive functions were evaluated using 2 independent hippocampal-dependent behavioral tests, the novel object recognition task and Morris water maze. We found that deltamethrin-treated mice exhibited profound deficits in novel object recognition and learning and memory in water maze. Deltamethrin exposure significantly decreased bromodeoxyuridine (BrdU)-positive cells (39%) and Ki67+ cells (47%) in the DG of the hippocampus, indicating decreased cellular proliferation. In addition, deltamethrin-treated mice exhibited a 44% decrease in nestin-expressing neural progenitor cells and a 38% reduction in the expression of doublecortin (DCX), an early neuronal differentiation marker. Furthermore, deltamethrin-exposed mice exhibited a 25% reduction in total number of granule cells in the DG. These findings indicate that relatively short-term exposure to deltamethrin causes significant deficits in hippocampal neurogenesis that is associated with impaired learning and memory.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yin Feng ◽  
Keguo Li ◽  
Elizabeth Roth ◽  
Dongman Chao ◽  
Christina M. Mecca ◽  
...  

A major hurdle preventing effective interventions for patients with mild traumatic brain injury (mTBI) is the lack of known mechanisms for the long-term cognitive impairment that follows mTBI. The closed head impact model of repeated engineered rotational acceleration (rCHIMERA), a non-surgical animal model of repeated mTBI (rmTBI), mimics key features of rmTBI in humans. Using the rCHIMERA in rats, this study was designed to characterize rmTBI-induced behavioral disruption, underlying electrophysiological changes in the medial prefrontal cortex (mPFC), and associated mitochondrial dysfunction. Rats received 6 closed-head impacts over 2 days at 2 Joules of energy. Behavioral testing included automated analysis of behavior in open field and home-cage environments, rotarod test for motor skills, novel object recognition, and fear conditioning. Following rmTBI, rats spent less time grooming and less time in the center of the open field arena. Rats in their home cage had reduced inactivity time 1 week after mTBI and increased exploration time 1 month after injury. Impaired associative fear learning and memory in fear conditioning test, and reduced short-term memory in novel object recognition test were found 4 weeks after rmTBI. Single-unit in vivo recordings showed increased neuronal activity in the mPFC after rmTBI, partially attributable to neuronal disinhibition from reduced inhibitory synaptic transmission, possibly secondary to impaired mitochondrial function. These findings help validate this rat rmTBI model as replicating clinical features, and point to impaired mitochondrial functions after injury as causing imbalanced synaptic transmission and consequent impaired long-term cognitive dysfunction.


2019 ◽  
Vol 3 (s1) ◽  
pp. 9-10
Author(s):  
Alexandra Moussa-Tooks ◽  
Ken Mackie ◽  
John Green ◽  
Lisa Bartolomeo ◽  
Alex Gimeno ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Early life stress is known to greatly impact neurodevelopment during critical periods, conferring risk for various psychopathologies, including the onset and exacerbation of schizophrenia and anxiety disorders. The endocannabinoid system is highly integrated into the stress response and may be one means by which early life stress produces such deleterious effects. Using a naturalistic, ecologically valid animal model, this study explored interactions between the stress response and endocannabinoid systems within the cerebellum, a region dense with the CB1 endocannabinoid receptors and shown to be susceptible to stress. METHODS/STUDY POPULATION: This study explored behavioral and neural impacts of early life stress in Long-Evans rats reared with or without limited access to bedding material during postnatal day (PND) 2-9. Corticosterone (CORT) levels were measured at PND8 and 70. During PND50-70, rats were assessed on Novel Object Recognition to test memory, Rotarod to evaluate cerebellar integrity, Elevated Plus Maze to assay anxiety, Social Preference, and Eyeblink Conditioning, a cerebellar-dependent and endocannabinoid-mediated task. Lipid analysis was performed on PND70 tissue samples of cerebellar interpositus (IP) nucleus via high-performance liquid chromatography and tandem mass spectrometry. RESULTS/ANTICIPATED RESULTS: Both male and female rats experiencing early life stress exhibited significantly impaired recognition memory (N = 16-20/group). Female rats having undergone stress exhibited decreased social preference compared to normally reared females (N = 11/group). Stressed males showed facilitated eyblink conditioning compared to normally reared males (N = 7-9/group). There were no group differences in rotarod or elevated plus maze performance or CORT levels at PND8 or 70 across rearing groups. At PND70, male rats experiencing early life stress exhibited a significant decrease in 2-arachidonoyl glycerol (2-AG) and arachidonic acid levels in the IP nucleus compared to normally reared males (N = 8-9/group). Compared to normally reared females, those experiencing early life stress exhibited a significant increase in prostaglandin E2 levels in the IP nucleus (N = 6-7/group). DISCUSSION/SIGNIFICANCE OF IMPACT: Early life stress, induced by limited bedding, resulted in sex-specific behavioral and lipid impairments. Results suggest that stress causes long-term alterations in endocannabinoid dynamics in males in the cerebellar IP nucleus and sex-related lipids in female cerebellum. These changes may contribute to observed long-term behavioral aberrations. Moreover, findings suggest these behavioral changes may be the result of negative-feedback dysfunction (as evidenced by decreased endocannabinoids in males) or increased neural inflammation or proliferation (as evidenced by increased prostaglandins in females). Future analysis will quantify mRNA and protein for cannabinoid receptors to better characterize aberrations to this system. Moreover, other neural regions dense with cannabinoid receptors (i.e., PFC, hippocampus) will be investigated. This work provides a basis for understanding stress impacts on the development of cognitive deficits observed in psychotic and anxiety disorders. Specifically, facilitation of eyblink conditioning complements research in humans with anxiety disorders. Broadly, understanding stress-related endocannabinoid dysregulation may provide insights into risks for, and the development of, psychopathology and uncover novel therapeutic targets with high translational power.


2006 ◽  
Vol 553 (1-3) ◽  
pp. 109-119 ◽  
Author(s):  
Warren D. Hirst ◽  
Tania O. Stean ◽  
Derek C. Rogers ◽  
David Sunter ◽  
Pippa Pugh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document