A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature

2012 ◽  
Vol 43 (1) ◽  
pp. 1063-1071 ◽  
Author(s):  
Sanjay Kelo ◽  
Sanjay Dudul
2021 ◽  
Vol 292 ◽  
pp. 116912
Author(s):  
Rong Wang Ng ◽  
Kasim Mumtaj Begam ◽  
Rajprasad Kumar Rajkumar ◽  
Yee Wan Wong ◽  
Lee Wai Chong

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
David Palchak ◽  
Siddharth Suryanarayanan ◽  
Daniel Zimmerle

This paper presents an artificial neural network (ANN) for forecasting the short-term electrical load of a university campus using real historical data from Colorado State University. A spatio-temporal ANN model with multiple weather variables as well as time identifiers, such as day of week and time of day, are used as inputs to the network presented. The choice of the number of hidden neurons in the network is made using statistical information and taking into account the point of diminishing returns. The performance of this ANN is quantified using three error metrics: the mean average percent error; the error in the ability to predict the occurrence of the daily peak hour; and the difference in electrical energy consumption between the predicted and the actual values in a 24-h period. These error measures provide a good indication of the constraints and applicability of these predictions. In the presence of some enabling technologies such as energy storage, rescheduling of noncritical loads, and availability of time of use (ToU) pricing, the possible demand-side management options that could stem from an accurate prediction of energy consumption of a campus include the identification of anomalous events as well the management of usage.


Author(s):  
Mengxiang Zhuang ◽  
Qixin Zhu

Background: Energy conservation has always been a major issue in our country, and the air conditioning energy consumption of buildings accounts for the majority of the energy consumption of buildings. If the building load can be predicted and the air conditioning equipment can respond in advance, it can not only save energy, but also extend the life of the equipment. Introduction: The Neural network proposed in this paper can deeply analyze the load characteristics through three gate structures, which is helpful to improve the prediction accuracy. Combined with grey relational degree method, the prediction speed can be accelerated. Method: This paper introduces a grey relational degree method to analyze the factors related to air conditioning load and selects the best ones. A Long Short Term Memory Neural Network (LSTMNN) prediction model was established. In this paper, grey relational analysis and LSTMNN are combined to predict the air conditioning load of an office building, and the predicted results are compared with the real values. Results: Compared with Back Propagation Neural Network (BPNN) prediction model and Support Vector Machine (SVM) prediction model, the simulation results show that this method has better effect on air conditioning load prediction. Conclusion: Grey relational degree analysis can extract the main factors from the numerous data, which is more convenient and quicker without repeated trial and error. LSTMNN prediction model not only considers the relation of air conditioning load on time series, but also considers the nonlinear relation between load and other factors. This model has higher prediction accuracy, shorter prediction time and great application potential.


Sign in / Sign up

Export Citation Format

Share Document