Solution of unit commitment problem using gravitational search algorithm

Author(s):  
Provas Kumar Roy
Author(s):  
Rachid Habachi ◽  
Achraf Touil ◽  
Abdelkabir Charkaoui ◽  
Abdelwahed Echchatbi

<p>Eagle strategy is a two-stage optimization strategy, which is inspired by the observation of the hunting behavior of eagles in nature. In this two-stage strategy, the first stage explores the search space globally by using a Levy flight; if it finds a promising solution, then an intensive local search is employed using a more efficient local optimizer, such as hillclimbing and the downhill simplex method. Then, the two-stage process starts again with new global exploration, followed by a local search in a new region. One of the remarkable advantages of such a combina-tion is to use a balanced tradeoff between global search (which is generally slow) and a rapid local search. The crow search algorithm (CSA) is a recently developed metaheuristic search algorithm inspired by the intelligent behavior of crows.This research article integrates the crow search algorithm as a local optimizer of Eagle strategy to solve unit commitment (UC) problem. The Unit commitment problem (UCP) is mainly finding the minimum cost schedule to a set of generators by turning each one either on or off over a given time horizon to meet the demand load and satisfy different operational constraints. There are many constraints in unit commitment problem such as spinning reserve, minimum up/down, crew, must run and fuel constraints. The proposed strategy ES-CSA is tested on 10 to 100 unit systems with a 24-h scheduling horizon. The effectiveness of the proposed strategy is compared with other well-known evolutionary, heuristics and meta-heuristics search algorithms, and by reported numerical results, it has been found that proposed strategy yields global results for the solution of the unit commitment problem.</p><p> </p>


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2547 ◽  
Author(s):  
Heba-Allah ElAzab ◽  
R. Swief ◽  
Hanady Issa ◽  
Noha El-Amary ◽  
Alsnosy Balbaa ◽  
...  

Smart grid architecture is one of the difficult constructions in electrical power systems. The main feature is divided into three layers; the first layer is the power system level and operation, the second layer is the sensor and the communication devices, which collect the data, and the third layer is the microprocessor or the machine, which controls the whole operation. This hierarchy is working from the third layer towards first layer and vice versa. This paper introduces an eco unit commitment study, that scheduling both conventional power plants (three IEEE) thermal plants) as a dispatchable distributed generators, with renewable energy resources (wind, solar) as a stochastic distributed generating units; and plug-in electric vehicles (PEVs), which can be contributed either loads or generators relied on the charging timetable in a trustworthy unit commitment. The target of unit commitment study is to minimize the combined eco costs by integrating more augmented clean and renewable energy resource with the help of field programming gate array (FPGA) layer installation. A meta-heuristic algorithm, such as the Gravitational Search Algorithm (GSA), proves its accuracy and efficiency in reducing the incorporated cost function implicating costs of CO2 emission by optimally integrating and scheduling stochastic resources and charging and discharging processes of PEVs with conventional resources power plants. The results obtained from GSA are compared with a conventional numerical technique, such as the Dynamic Programming (DP) algorithm. The feasibility to implement GSA on an appropriate hardware platform, such as FPGA, is also discussed.


Sign in / Sign up

Export Citation Format

Share Document