Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine

Author(s):  
Sheng-wei Fei ◽  
Yong He
2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Aiqing Kang ◽  
Qingxiong Tan ◽  
Xiaohui Yuan ◽  
Xiaohui Lei ◽  
Yanbin Yuan

Hybrid Ensemble Empirical Mode Decomposition (EEMD) and Least Square Support Vector Machine (LSSVM) is proposed to improve short-term wind speed forecasting precision. The EEMD is firstly utilized to decompose the original wind speed time series into a set of subseries. Then the LSSVM models are established to forecast these subseries. Partial autocorrelation function is adopted to analyze the inner relationships between the historical wind speed series in order to determine input variables of LSSVM models for prediction of every subseries. Finally, the superposition principle is employed to sum the predicted values of every subseries as the final wind speed prediction. The performance of hybrid model is evaluated based on six metrics. Compared with LSSVM, Back Propagation Neural Networks (BP), Auto-Regressive Integrated Moving Average (ARIMA), combination of Empirical Mode Decomposition (EMD) with LSSVM, and hybrid EEMD with ARIMA models, the wind speed forecasting results show that the proposed hybrid model outperforms these models in terms of six metrics. Furthermore, the scatter diagrams of predicted versus actual wind speed and histograms of prediction errors are presented to verify the superiority of the hybrid model in short-term wind speed prediction.


2013 ◽  
Vol 860-863 ◽  
pp. 361-367 ◽  
Author(s):  
Yi Hui Zhang ◽  
He Wang ◽  
Zhi Jian Hu ◽  
Kai Wang ◽  
Yan Li ◽  
...  

This paper studied the short-term prediction of wind speed by means of wavelet decomposition and Extreme Learning Machine. Wind speed signal was decomposed into several sequences by wavelet decomposition to reduce the non-stationary. Secondly, the phase space reconstructed was used to mine sequences characteristics, and then an improved extreme learning machine model of each component was established. Finally, the results of each component forecast superimposed to get the final result. The simulation result verified that the hybrid model effectively improved the wind speed prediction accuracy.


2020 ◽  
Vol 309 ◽  
pp. 05011
Author(s):  
Jinyong Xiang ◽  
Zhifeng Qiu ◽  
Qihan Hao ◽  
Huhui Cao

The accurate and reliable wind speed prediction can benefit the wind power forecasting and its consumption. As a continuous signal with the high autocorrelation, wind speed is closely related to the past and future moments. Therefore, to fully use the information of two direction, an auto-regression model based on the bi-directional long short term memory neural network model with wavelet decomposition (WT-bi-LSTM) is built to predict the wind speed at multi-time scales. The proposed model are validated by using the actual wind speed series from a wind farm in China. The validation results demonstrated that, compared with other four traditional models, the proposed strategy can effectively improve the accuracy of wind speed prediction.


2020 ◽  
Vol 6 ◽  
pp. 1147-1159 ◽  
Author(s):  
Saeed Samadianfard ◽  
Sajjad Hashemi ◽  
Katayoun Kargar ◽  
Mojtaba Izadyar ◽  
Ali Mostafaeipour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document