A novel multi-stage adaptive transmission network expansion planning to countermeasure cascading failure occurrence

Author(s):  
Saber Armaghani ◽  
Ali Hesami Naghshbandy ◽  
S. Mohammad Shahrtash
2021 ◽  
Vol 11 (5) ◽  
pp. 2155
Author(s):  
Mohamed M. Refaat ◽  
Shady H. E. Abdel Aleem ◽  
Yousry Atia ◽  
Ziad M. Ali ◽  
Mahmoud M. Sayed

This paper introduces a multi-stage dynamic transmission network expansion planning (MSDTNEP) model considering the N-1 reliability constraint. The integrated planning problem of N-1 security and transmission expansion planning is essential because a single line outage could be a triggering event to rolling blackouts. Two suggested scenarios were developed to obtain the optimal configuration of the Egyptian West Delta Network’s realistic transmission (WDN) to meet the demand of the potential load growth and ensure the system reliability up to the year 2040. The size of a blackout, based on the amount of expected energy not supplied, was calculated to evaluate both scenarios. The load forecasting (up to 2040) was obtained based on an adaptive neuro-fuzzy inference system because it gives excellent results compared to conventional methods. The linear population size reduction—Success-History-based Differential Evolution with semi-parameter adaptation (LSHADE-SPA) hybrid—covariance matrix adaptation evolution strategy (CMA-ES) algorithm (LSHADE-SPACMA)—is proposed to solve the problem. The semi-adaptive nature of LSHADE-SPACMA and the hybridization between LSHADE and CMA-ES are able to solve complex optimization problems. The performance of LSHADE-SPACMA in solving the problem is compared to other well-established methods using three testing systems to validate its superiority. Then, the MSDTNEP of the Egyptian West Delta Network is presented, and the numerical results of the two scenarios are compared to obtain an economic plan and avoid a partial or total blackout.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1944
Author(s):  
Yuhong Wang ◽  
Lei Chen ◽  
Hong Zhou ◽  
Xu Zhou ◽  
Zongsheng Zheng ◽  
...  

Compared with static transmission network expansion planning (TNEP), multi-stage TNEP is more in line with the actual situation, but the modeling is also more complicated. This paper proposes a new multi-stage TNEP method based on the deep Q-network (DQN) algorithm, which can solve the multi-stage TNEP problem based on a static TNEP model. The main purpose of this research is to provide grid planners with a simple and effective multi-stage TNEP method, which is able to flexibly adjust the network expansion scheme without replanning. The proposed method takes into account the construction sequence of lines in the planning and completes the adaptive planning of lines by utilizing the interactive learning characteristics of the DQN algorithm. In order to speed up the learning efficiency of the algorithm and enable the agent to have a better judgment on the reward of the line-building action, the prioritized experience replay (PER) strategy is added to the DQN algorithm. In addition, the economy, reliability, and flexibility of the expansion scheme are considered in order to evaluate the scheme more comprehensively. The fault severity of equipment is considered on the basis of the Monte Carlo method to obtain a more comprehensive system state simulation. Finally, extensive studies are conducted with IEEE 24-bus reliability test system, and the computational results demonstrate the effectiveness and adaptability of the proposed flexible TNEP method.


2021 ◽  
Vol 11 (13) ◽  
pp. 6071
Author(s):  
Mohamed M. Refaat ◽  
Shady H. E. Abdel Aleem ◽  
Yousry Atia ◽  
Ziad M. Ali ◽  
Mahmoud M. Sayed

The authors wish to make the following corrections to this paper [...]


Author(s):  
Ashu Verma ◽  
Pradeep R. Bijwe ◽  
Bijaya Ketan Panigrahi

Transmission network expansion planning is a very critical problem due to not only the huge investment cost involved, but also the associated security issues. Any long range planning problem is confronted with the challenge of non-statistical uncertainty in the data. Although large number of papers have been published in this area, the efforts to tackle the above mentioned security and uncertainty issues have been relatively very few, due to the formidable complexity involved. This paper tries to bridge this gap by proposing a technique to tackle these problems. Boundary DC power flow is used to ascertain the worst power flows on the lines. A simple basic binary Genetic algorithm is used to solve the optimization problem as an illustration. Results for two sample test systems have been obtained to demonstrate the potential of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document