cascading failure
Recently Published Documents


TOTAL DOCUMENTS

533
(FIVE YEARS 208)

H-INDEX

37
(FIVE YEARS 7)

Author(s):  
Weifei Zang ◽  
Xinsheng Ji ◽  
Shuxin Liu ◽  
Yingle Li

Traditional research studies on interdependent networks with groups ignore the relationship between nodes in dependency groups. In real-world networks, nodes in the same group may support each other through cooperation and tend to fail or survive together. In this paper, based on the framework of group percolation, a cascading failure model on interdependent networks with cooperative dependency groups under targeted attacks is proposed, and the effect of group size distributions on the robustness of interdependent networks is investigated. The mutually giant component and phase transition point of networks with different group size distributions are analyzed. The effectiveness of the theory is verified through simulations. Results show that the robustness of interdependent networks with cooperative dependency groups can be enhanced by increasing the heterogeneity between groups under targeted attacks. The theory can well predict the numerical simulation results. This model provides some theoretical guidance for designing robust interdependent systems in real world.


Author(s):  
Haonan Ye ◽  
Xiao Luo

Analysis of the robustness and vulnerability of metro networks has great implications for public transport planning and emergency management, particularly considering passengers’ dynamic behaviors. This paper presents an improved coupled map lattices (CMLs) model based on graph attention networks (GAT) to study the cascading failure process of metro networks. The proposed model is applied to the Shanghai metro network using the automated fare collection (AFC) data, and the passengers’ dynamic behaviors are simulated by GAT. The quantitative cascading failure analysis shows that Shanghai metro network is robust to random attacks, but fragile to intentional attacks. Moreover, there is an approximately normal distribution between instant cascading failure speed and time step and the perturbation in a station which leads to steady state is approximately a constant. The result shows that a station surrounded by other densely distributed stations can trigger cascading failure faster and the cascading failure triggered by low-level accidents will spread in a short time and disappear quickly. This study provides an effective reference for dynamic safety evaluation and emergency management in metro networks.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 118
Author(s):  
Lei Chen ◽  
Nan Zhao ◽  
Zihao Cheng ◽  
Wen Gu

To reach effective monitoring and control, a physical power grid couples with a communication network and evolves into cyber–physical power systems (CPPS), but this cyber–physical interdependence may exacerbate failure on the physical/cyber side and may turn into a cascading failure. Furthermore, distributed generators (DGs) and plug-in hybrid electric vehicles (PHEVs) introduced into CPPS add uncertainties to both the supply side and demand side of power energy. In this paper, we detail the model of CPPS and its coupling mechanism in operation and discuss the propagation mechanism of cascading failure within and across a physical power grid and a communication network. For uncertainties of power energy in the supply and demand sides, the generation and load of each day are divided into 24 time segments for modeling. In the case study, the well-being criteria and reliability indexes are employed to analyze the effect of DGs and cyber–physical interdependence on the reliability of CPPS when DGs suffer aging failure and cyber attacks, and the simulations indicate that introducing DGs can effectively enhance the period of healthy and marginal states. Furthermore, cyber attacks can sharply destroy the CPPS compared with aging failure.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pinsheng Duan ◽  
Jianliang Zhou

PurposeThe construction industry is an industry with a high incidence of safety accidents, and the interactions of unsafe behaviors of construction workers are the main cause of accidents. The neglect of the interactions may lead to serious underestimation of safety risks. This research aims to analyze the cascading vulnerability of unsafe behaviors of construction workers from the perspective of network modeling.Design/methodology/approachAn unsafe behavior network of construction workers and a cascading vulnerability analysis model were established based on 296 actual accident cases. The cascading vulnerability of each unsafe behavior was analyzed based on the degree attack strategy.FindingsComplex network with 85 unsafe behavior nodes is established based on the collected accidents in total. The results showed that storing in improper location, does not wear a safety helmet, working with illness and working after drinking are unsafe behaviors with high cascading vulnerability. Coupling analysis revealed that differentiated management strategies of unsafe behaviors should be applied. Besides, more focus should be put on high cascading vulnerability behaviors.Originality/valueThis research proposed a method to construct the cascading failure model of unsafe behavior for individual construction workers. The key parameters of the cascading failure model of unsafe behaviors of construction workers were determined, which could provide a reference for the research of cascading failure of unsafe behaviors. Additionally, a dynamic vulnerability research framework based on complex network theory was proposed to analyze the cascading vulnerability of unsafe behaviors. The research synthesized the results of dynamic and static analysis and found the key control nodes to systematically control unsafe construction behaviors.


2021 ◽  
Vol 242 ◽  
pp. 110141
Author(s):  
Baoping Cai ◽  
Xiaoyan Shao ◽  
Xiaobing Yuan ◽  
Yonghong Liu ◽  
Guoming Chen ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1994
Author(s):  
Yanchen Liu ◽  
Minfang Peng ◽  
Xingle Gao ◽  
Haiyan Zhang

The prevention of cascading failures and large-scale power outages of power grids by identifying weak links has become one of the key topics in power systems research. In this paper, a vulnerability radius index is proposed to identify the initial fault, and a fault chain model of cascading failure is developed with probabilistic attributes to identify the set of fault chains that have a significant impact on the safe and stable operation of power grids. On this basis, a method for evaluating the vulnerability of transmission lines based on a multi-criteria decision analysis is proposed, which can quickly identify critical transmission lines in the process of cascading failure. Finally, the proposed model and method for identifying vulnerable lines during the cascading failure process is demonstrated on the IEEE-118 bus system.


Sign in / Sign up

Export Citation Format

Share Document