Photovoltaic penetration in isolated thermoelectric power plants in Brazil: Power regulation and specific consumption aspects

Author(s):  
Renato Luz Cavalcante ◽  
Thiago Oliveira Costa ◽  
Marcelo Pinho Almeida ◽  
Samuel Williamson ◽  
Marcos André Barros Galhardo ◽  
...  
2018 ◽  
Author(s):  
Achyut Paudel ◽  
Joshua Richey ◽  
Jason Quinn ◽  
Todd M. Bandhauer

2013 ◽  
Author(s):  
Heather Roberts ◽  
Mitch Favrow ◽  
Jesse Coatney ◽  
David Yoe ◽  
Chenaniah Langness ◽  
...  

Thermoelectric power plants burn thousands of tons of non-renewable resources every day to heat water and create steam, which drives turbines that generate electricity. This causes a significant drain on local resources by diverting water for irrigation and residential usage into the production of energy. Moreover, the use of fossil reserves releases significant amounts of greenhouse and hazardous gases into the atmosphere. As electricity consumption continues to grow and populations rise, there is a need to find other avenues of energy production while conserving water resources. Co-combusting biomass with coal is one potential route that promotes renewable energy while reducing emissions from thermoelectric power plants. In order to move in this direction, there is a need for a low-energy and low-cost system capable of drying materials to a combustion appropriate level in order to replace a significant fraction of the fossil fuel used. Biomass drying is an ancient process often involving the preservation of foods using passive means, which is economically efficient but slow and impractical for large-scale fuel production. This effort, accomplished as an undergraduate capstone design project, instead implements an active drying system for poplar wood using theorized waste heat from the power plant and potentially solar energy. The use of small-scale prototypes demonstrate the principles of the system at a significantly reduced cost while allowing for calculation of mass and energy balances in the analysis of drying time, Coefficient of Performance, and the economics of the process. Experimental tests illustrate the need to distribute air and heat evenly amongst the biomass for consistent drying. Furthermore, the rotation of biomass is critical in order to address the footprint of the system when placing next to an existing thermoelectric power plant. The final design provides a first step towards the refinement and development of a system capable of efficiently returning an amount of biomass large enough to replace non-renewable resources. Finally, an innovative methodology applied to the dryer is discussed that could recover water evaporated from the biomass and utilize it for agricultural purposes or within the power plant thermodynamic cycle.


2020 ◽  
Vol 11 (6) ◽  
pp. 178-201
Author(s):  
Joaci Dos Santos Cerqueira ◽  
Helder Neves de Albuquerque ◽  
Mário Luiz Farias Cavalcanti ◽  
Francisco De Assis Salviano de Sousa

Thermoelectric power plants can directly cause environmental impacts with respect to emissions of atmospheric gases caused by combustion for operation, being the main agents: unburned hydrocarbons, carbon oxides, sulfur oxides, nitrogen oxides, volatile organic compounds and material particulate. Thus, this research aimed to measure and compare the instantaneous levels of the chemical compounds CO2, CO, SO2, noise, air temperature, relative humidity, dew point temperature, wind speed and luminescence in two peri-urban areas of the surrounding a thermoelectric power plant in the interior of Paraíba, Brazil. To this end, data were collected using environmental sensors (a Garmin Gpsmap 62sc GPS camera 5mp; a Canon powershot SX60HS 16.1MP LCD 3.0 semi-professional digital camera, 65x optical zoom; an ITMCO2-600 meter for measuring CO2 and CO; one ITMP-600 multifunctional meter for AVG/MAX/MIN/DIF measurement, temperature measurement, humidity measurement, sound level measurement, luminescence measurement and wind speed measurement; and a GasAlert Extreme SO2 Gas detector to measure concentrations of sulfur in the environment), from October 2015 to March 2017, during daytime, between 7:00am to 9:00am, with weekly frequency, with instantaneous sampling measurements being collected at the collection points, near the thermoelectric power plant (Area 1) and close to the BR/104 highway (Area 2). The results showed that the records through the environmental sensors were not significant among the areas surveyed regarding the values of CO, CO2, SO2, air temperature, relative humidity, dew point temperature and luminescence. Regarding the wind speed, the two areas showed little variation. The noise levels in Area 1, on the other hand, during the operation of the thermoelectric power plant in its fullness, there was an increase above the permitted level, according to current Brazilian regulations, causing damage to the health of the inhabitants of its surroundings, in addition to harming the fauna of the surrounding area. around, mainly, the birds that are driven away by the noise, and, consequently, reducing the diversity of the avifauna surrounding the Thermoelectric. Thus, the use of environmental sensors to monitor the air quality of this area is very important, thus serving as a comparative support for future studies, as well as establishing the genesis for an environmental database in this metropolitan region of Campina Grande/PB, Brazil.


2019 ◽  
Vol 300 ◽  
pp. 04003
Author(s):  
Marcos Venicius S. Pereira ◽  
Fathi Aref Darwish ◽  
André Feiferis ◽  
Tiago Lima Castro

Fatigue failures of motor crankshafts operating in thermoelectric power plants have recently been reported. Stress fields provided by finite element calculations at critical points of a crankshaft that failed in service are used to test the structural integrity of the component. Taking into account the fact that the stresses acting at a given point are most likely out of phase, multiaxial fatigue criteria based on the von Mises stress are considered to be most suitable for predicting the fatigue behavior of the crankshaft. Using the von Mises stress, it was also possible to apply octahedral shear stress-based criteria and the results obtained have indicated that the crankshaft made of DIN 34CrNiMo6 steel should not suffer fatigue failure under the action of the stress fields in question. However, such failures have been occurring and this apparent discrepancy is presented and briefly discussed in the present study.


Sign in / Sign up

Export Citation Format

Share Document