Clustered R3LS: A novel approach for online estimation of power system dominant dynamics

Author(s):  
Ricardo Schumacher ◽  
Gustavo H.C. Oliveira ◽  
Roman Kuiava
2021 ◽  
pp. 1-13
Author(s):  
Pullabhatla Srikanth ◽  
Chiranjib Koley

In this work, different types of power system faults at various distances have been identified using a novel approach based on Discrete S-Transform clubbed with a Fuzzy decision box. The area under the maximum values of the dilated Gaussian windows in the time-frequency domain has been used as the critical input values to the fuzzy machine. In this work, IEEE-9 and IEEE-14 bus systems have been considered as the test systems for validating the proposed methodology for identification and localization of Power System Faults. The proposed algorithm can identify different power system faults like Asymmetrical Phase Faults, Asymmetrical Ground Faults, and Symmetrical Phase faults, occurring at 20% to 80% of the transmission line. The study reveals that the variation in distance and type of fault creates a change in time-frequency magnitude in a unique pattern. The method can identify and locate the faulted bus with high accuracy in comparison to SVM.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6632
Author(s):  
Antonio Pepiciello ◽  
Alfredo Vaccaro ◽  
Loi Lei Lai

Prevention and mitigation of low probability, high impact events is becoming a priority for power system operators, as natural disasters are hitting critical infrastructures with increased frequency all over the world. Protecting power networks against these events means improving their resilience in planning, operation and restoration phases. This paper introduces a framework based on time-varying interval Markov Chains to assess system’s resilience to catastrophic events. After recognizing the difficulties in accurately defining transition probabilities, due to the presence of data uncertainty, this paper proposes a novel approach based on interval mathematics, which allows representing the elements of the transition matrices by intervals, and computing reliable enclosures of the transient state probabilities. The proposed framework is validated on a case study, which is based on the resilience analysis of a power system in the presence of multiple contemporary faults. The results show how the proposed framework can successfully enclose all the possible outcomes obtained through Monte Carlo simulation. The main advantages are the low computational burden and high scalability achieved.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 101426-101436
Author(s):  
Fanhong Zeng ◽  
Junbo Zhang ◽  
Ge Chen ◽  
Zikun Wu ◽  
Siwei Huang ◽  
...  

Author(s):  
Yiping Chen ◽  
Jun Hou ◽  
Jingpeng Chen ◽  
Xiaodong Zheng ◽  
Haoyong Chen ◽  
...  
Keyword(s):  

Author(s):  
Saber Nourizadeh ◽  
Ali Mohammad Ranjbar ◽  
Mahmoud R. Pishvaie ◽  
Morteza Sadeghi

During power system restoration, it is necessary to check the phase angle between two buses before closing circuit breakers to connect a line between them. A novel approach for reducing large standing phase angle (SPA) based on Genetic Algorithm (GA) is presented in this paper. The proposed approach starts with a state estimation on Wide Area Monitoring System (WAMS) data measurements and considering power system operation and angular stability constraints, seeks an optimal control action scenario for reducing SPA. Since these constraints are evaluated based on WAMS data, the presented approach is considerably high speed and accurate. As an optimization problem, objective function of the proposed approach is to minimize variation from the current state of the power system. Simulation results on the IEEE 118 bus test system clearly show efficiency of the approach.


Sign in / Sign up

Export Citation Format

Share Document