Research on the influence of electric railway bilateral power supply on power system and countermeasures

Author(s):  
Liyan Zhang ◽  
Xin Li ◽  
Shiwen Liang ◽  
Dushuo Han
2020 ◽  
Vol 8 (8) ◽  
pp. 29-36
Author(s):  
Yeugene P. FIGURNOV ◽  
◽  
Yury I. ZHARKOV ◽  
Nataliya A. POPOVA ◽  
◽  
...  

Author(s):  
Devina Cristine Marubin ◽  
◽  
Sim Sy Yi ◽  

Can-Sized satellite (canSAT) is a small satellite that is used for educational purpose. CanSAT offer student to build their satellites with their creativity which make the learning process more effective. In Malaysia, SiswaSAT is held by the Malaysia Space Agency for students in different categories to participate and build their satellites according to rules set and it should be a low-cost project. CanSAT can be divided into few parts which are communication system, onboard data acquisition, ground control station and power system. The power system is one of the important and heaviest subsystems, it needed to supply power, but weight and size are one of the main concerned as the canSAT should not exceed the required weight and selecting power supply that is matched with the overall power budget that has small size and lightweight is challenging. Therefore, the power supply selection should consider this detail. The power distribution design should be able to supply an appropriate amount of current and voltage to the components according to their specification. This study aims to develop and test the proposed prototype which is named ScoreSAT able to provide data and have enough power supply for the whole operation. Therefore, an initiative to develop the appropriate power distribution design for canSAT is taken to overcome the problem of the power system. Moreover, each subsystem needs to be tested by obtaining the results from the onboard data acquisition and transmit the data using the communication system before integrating into the power system. ScoreSAT prototype needs to carry the system that is mounted inside, thus the space inside the prototype needs to be fully utilized for the whole system to fit in. ScoreSAT completes the mission by obtaining data acquisition during the operation.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Changyu Zhou ◽  
Guohe Huang ◽  
Jiapei Chen

In this study, an inexact two-stage stochastic linear programming (ITSLP) method is proposed for supporting sustainable management of electric power system under uncertainties. Methods of interval-parameter programming and two-stage stochastic programming were incorporated to tackle uncertainties expressed as interval values and probability distributions. The dispatchable loads are integrated into the framework of the virtual power plants, and the support vector regression technique is applied to the prediction of electricity demand. For demonstrating the effectiveness of the developed approach, ITSLP is applied to a case study of a typical planning problem of power system considering virtual power plants. The results indicate that reasonable solutions for virtual power plant management practice have been generated, which can provide strategies in mitigating pollutant emissions, reducing system costs, and improving the reliability of power supply. ITSLP is more reliable for the risk-aversive planners in handling high-variability conditions by considering peak-electricity demand and the associated recourse costs attributed to the stochastic event. The solutions will help decision makers generate alternatives in the event of the insufficient power supply and offer insight into the tradeoffs between economic and environmental objectives.


Sign in / Sign up

Export Citation Format

Share Document