On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains

2014 ◽  
Vol 61 ◽  
pp. 116-128 ◽  
Author(s):  
Amir Rasekhi Nejad ◽  
Zhen Gao ◽  
Torgeir Moan
Author(s):  
Bryan Nelson ◽  
Yann Quéméner ◽  
Tsung-Yueh Lin ◽  
Hsin-Haou Huang ◽  
Chi-Yu Chien

This study evaluated, by time-domain simulations, the fatigue life of the jacket support structure of a 3.6 MW wind turbine operating in Fuhai Offshore Wind Farm. The long-term statistical environment was based on a preliminary site survey that served as the basis for a convergence study for an accurate fatigue life evaluation. The wave loads were determined by the Morison equation, executed via the in-house HydroCRest code, and the wind loads on the wind turbine rotor were calculated by an unsteady BEM method. A Finite Element model of the wind turbine was built using Beam elements. However, to reduce the time of computation, the hot spot stress evaluation combined FE-derived Closed-Form expressions of the nominal stresses at the tubular joints and stress concentration factors. Finally, the fatigue damage was assessed using the Rainflow Counting scheme and appropriate SN curves. Based on a preliminary sensitivity study of the fatigue damage prediction, an optimal load setting of 60-min short-term environmental conditions with one-second time steps was selected. After analysis, a sufficient fatigue strength was identified, but further calculations involving more extensive long-term data measurements are required in order to confirm these results. Finally, this study highlighted the sensitivity of the fatigue life to the degree of fluctuation (standard deviation) of the wind loads, as opposed to the mean wind loads, as well as the importance of appropriately orienting the jacket foundations according to prevailing wind and wave conditions.


Author(s):  
Christof Devriendt ◽  
Filipe Magalhães ◽  
Mahmoud El Kafafy ◽  
Gert De Sitter ◽  
Álvaro Cunha ◽  
...  

Author(s):  
Emil Smilden ◽  
Erin E. Bachynski ◽  
Asgeir J. Sørensen

A simulation study is performed to identify the key contributors to lifetime accumulated fatigue damage in the support-structure of a 10 MW offshore wind turbine placed on a monopile foundation in 30 m water depth. The relative contributions to fatigue damage from wind loads, wave loads, and wind/wave misalignment are investigated through time-domain analysis combined with long-term variations in environmental conditions. Results show that wave loads are the dominating cause of fatigue damage in the support structure, and that environmental condtions associated with misalignment angle > 45° are insignificant with regard to the lifetime accumulated fatigue damage. Further, the results are used to investigate the potential of event-based use of control strategies developed to reduce fatigue loads through active load mitigation. Investigations show that a large reduction in lifetime accumulated fatigue damage is possible, enabling load mitigation only in certain situations, thus limiting collateral effects such as increased power fluctuations, and wear and tear of pitch actuators and drive-train components.


Author(s):  
P. Agarwal ◽  
L. Manuel

In the design of wind turbines—onshore or offshore—the prediction of extreme loads associated with a target return period requires statistical extrapolation from available loads data. The data required for such extrapolation are obtained by stochastic time-domain simulation of the inflow turbulence, the incident waves, and the turbine response. Prediction of accurate loads depends on assumptions made in the simulation models employed. While for the wind, inflow turbulence models are relatively well established, for wave input, the current practice is to model irregular (random) waves using a linear wave theory. Such a wave model does not adequately represent waves in shallow waters where most offshore wind turbines are being sited. As an alternative to this less realistic wave model, the present study investigates the use of irregular nonlinear (second-order) waves for estimating loads on an offshore wind turbine, with a focus on the fore-aft tower bending moment at the mudline. We use a 5MW utility-scale wind turbine model for the simulations. Using, first, simpler linear irregular wave modeling assumptions, we establish long-term loads and identify governing environmental conditions (i.e., the wind speed and wave height) that are associated with the 20-year return period load derived using the inverse first-order reliability method. We present the nonlinear irregular wave model next and incorporate it into an integrated wind-wave-response simulation analysis program for offshore wind turbines. We compute turbine loads for the governing environmental conditions identified with the linear model and also for an extreme environmental state. We show that computed loads are generally larger with the nonlinear wave modeling assumptions; this establishes the importance of using such refined nonlinear wave models in stochastic simulation of the response of offshore wind turbines.


Author(s):  
Muk Chen Ong ◽  
Erin E. Bachynski ◽  
Ole D. Økland ◽  
Elizabeth Passano

This paper presents numerical studies of the dynamic responses of a jacket-type offshore wind turbine using both decoupled and coupled models. In the decoupled (hydroelastic) model, the wind load is included through time-dependent forces and moments at a single node on the top of the tower. The coupled model is a hydro-servo-aero-elastic representation of the system. The investigated structure is the OC4 (Offshore Code Comparison Collaboration Continuation) jacket foundation supporting the NREL 5-MW wind turbine in a water depth of 50m. Different operational wind and wave loadings at an offshore site with relatively high soil stiffness are investigated. The objective of this study is to evaluate the applicability of the computationally efficient linear decoupled model by comparing with the results obtained from the nonlinear coupled model. Good agreement was obtained in the eigen-frequency analysis, decay tests, and wave-only simulations. In order to obtain good results in the combined wind and wave simulations, two different strategies were applied in the decoupled model, which are 1) Wind loads obtained from the coupled model were applied directly as time-dependent point loads in the decoupled model; and 2) The thrust and torque from an isolated rotor model were used as wind loads on the decoupled model together with a linear aerodynamic damper. It was found that, by applying the thrust force from an isolated rotor model in combination with linear damping, reasonable agreement could be obtained between the decoupled and coupled models in combined wind and wave simulations.


2015 ◽  
Vol 21 (6) ◽  
pp. 609-623 ◽  
Author(s):  
Dong-Hyawn Kim ◽  
Gee-Nam Lee ◽  
Yongjei Lee ◽  
Il-Keun Lee

Sign in / Sign up

Export Citation Format

Share Document