Comparison of d-gluconic acid production in selected strains of acetic acid bacteria

2016 ◽  
Vol 222 ◽  
pp. 40-47 ◽  
Author(s):  
F. Sainz ◽  
D. Navarro ◽  
E. Mateo ◽  
M.J. Torija ◽  
A. Mas
2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Isidoro García-García ◽  
Ana M. Cañete-Rodríguez ◽  
Inés M. Santos-Dueñas ◽  
Jorge E. Jiménez-Hornero ◽  
Armin Ehrenreich ◽  
...  

The many uses of gluconic acid and some of its salts are arousing increasing interest in these compounds and in their production levels. Although gluconic acid and gluconates can be obtained chemically, they are currently almost exclusively biotechnologically produced, mostly by fungus based methods. There is, however, an ongoing search for alternative microorganisms to avoid the problems of using fungi for this purpose and to improve the productivity of the process. Especially promising in this respect are acetic acid bacteria, particularly Gluconobacter strains. This paper discusses the main variables and operating conditions to be considered in optimizing gluconic acid production by Gluconobacter.


1989 ◽  
Vol 67 (6) ◽  
pp. 404-408 ◽  
Author(s):  
Hiroshi Sakurai ◽  
Hang Woo Lee ◽  
Seigo Sato ◽  
Sukekuni Mukataka ◽  
Joji Takahashi

2017 ◽  
Vol 866 ◽  
pp. 61-64
Author(s):  
Duongruitai Nicomrat

Fresh fruit vinegar fermentation is well known for the activities of diverse groups of microorganisms at two stages of the fermentation process. Their species diversity depend on the raw materials fermented. In the study, at the first step of high sugar production, less culturable acetic acid bacterial species but more Aspergillus spp. and yeasts, non-Saccharomyces were detected. At the end, the vinegar production step, the fermented broth showed only dominant acetic acid bacteria. In the study, yeasts and fungi were isolated and inoculated to the juice. The results showed that these consortium could help increase high alcohol and later more acetic acid production when compared with the control fruit vinegar fermentation.


2009 ◽  
Vol 75 (12) ◽  
pp. 4162-4174 ◽  
Author(s):  
Patrice de Werra ◽  
Maria Péchy-Tarr ◽  
Christoph Keel ◽  
Monika Maurhofer

ABSTRACT The rhizobacterium Pseudomonas fluorescens CHA0 promotes the growth of various crop plants and protects them against root diseases caused by pathogenic fungi. The main mechanism of disease suppression by this strain is the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). Direct plant growth promotion can be achieved through solubilization of inorganic phosphates by the production of organic acids, mainly gluconic acid, which is one of the principal acids produced by Pseudomonas spp. The aim of this study was to elucidate the role of gluconic acid production in CHA0. Therefore, mutants were created with deletions in the genes encoding glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad), required for the conversion of glucose to gluconic acid and gluconic acid to 2-ketogluconate, respectively. These enzymes should be of predominant importance for rhizosphere-colonizing biocontrol bacteria, as major carbon sources provided by plant root exudates are made up of glucose. Our results show that the ability of strain CHA0 to acidify its environment and to solubilize mineral phosphate is strongly dependent on its ability to produce gluconic acid. Moreover, we provide evidence that the formation of gluconic acid by CHA0 completely inhibits the production of PLT and partially inhibits that of DAPG. In the Δgcd mutant, which does not produce gluconic acid, the enhanced production of antifungal compounds was associated with improved biocontrol activity against take-all disease of wheat, caused by Gaeumannomyces graminis var. tritici. This study provides new evidence for a close association of gluconic acid metabolism with antifungal compound production and biocontrol activity in P. fluorescens CHA0.


Sign in / Sign up

Export Citation Format

Share Document