gluconic acid
Recently Published Documents


TOTAL DOCUMENTS

777
(FIVE YEARS 116)

H-INDEX

47
(FIVE YEARS 7)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Kai Yuan ◽  
Xiaofei Li ◽  
Xudong Yang ◽  
Shuai Luo ◽  
Xi Yang ◽  
...  

Abstract In this study, the effect of bacterial cellulose nanofibers (BCNF) incorporation on the structural and rheological properties of casein gels was investigated, where the mixed BCNF and casein gels were prepared by adding gluconic acid δ-lactone (GDL) to acidify the mixed polymer solutions at 3.0% casein concentration (w/v) and varying BCNF concentrations (0–0.5%, w/v). By changing the addition amount of GDL, the mechanical and structural properties of the mixed gels were studied at above, near and below the electric point (pI) of the casein. At pH above the pI of the casein, the introduction of BCNF initially increased the gel strength, but further addition of BCNF weakened the mixed gels. At near and below the pI of the casein, the incorporation of BCNF continuously increased the gel strength. Besides, all gels showed good structural homogeneity, without macroscopic phase separation occurring, which indicated good compatibility of BCNF with the casein gels.


Author(s):  
Xing-Yue Qi ◽  
Yalin He ◽  
Yan Yao ◽  
Lu Zhang ◽  
Yiran Li ◽  
...  

Catalytic selective oxidation of glucose into value-added gluconic acid is one of the sustainable routes for biomass utilization, for which the supported Au catalysts have been widely explored. Au/CeO2 was...


2021 ◽  
Author(s):  
Yang Liu ◽  
Jiatong Han ◽  
Andrew J Wilson ◽  
Lucy O'Sullivan ◽  
Cara H. Haney

Microbes possess conserved microbe-associated molecular patterns (MAMPs) such as flagellin that are recognized by plant receptors to induce immunity. Despite containing the same MAMPs as pathogens, commensals thrive in the plant rhizosphere microbiome indicating they must suppress or evade host immunity. The beneficial bacteria Pseudomonas capeferrum WCS358 can suppress Arabidopsis root immunity via acidification by secreting gluconic acid. While gluconic acid is sufficient to suppress immunity, we found that it is not necessary in a second beneficial strain Pseudomonas simiae WCS417, which produces more gluconic acid than WCS358. To uncover mechanisms that contribute to the suppression of Arabidopsis immunity, we performed a forward genetic screen in EMS-mutagenized P. simiae WCS417 using a flagellin-inducible CYP71A12 pro:GUS reporter as an Arabidopsis immune readout. We identified a mutant that cannot suppress flagellin-elicited CYP71A12 pro:GUS expression or acidify the rhizosphere. Next generation sequencing revealed a mutation in the catabolic site of an ornithine carbamoyltransferase argF, which is required for arginine biosynthesis. The mutant could be complemented by expression of argF from a plasmid, and a ΔargF mutant could not suppress immunity. Fungal pathogens can use alkalization through production of ammonia and glutamate, the arginine biosynthetic precursors, to promote their own growth and virulence. Therefore, we hypothesized that the biosynthesis of specific amino acids may be necessary to reduce levels of ammonia and glutamate to prevent rhizosphere alkalization and bacterial overgrowth. Genetically blocking arginine, glutamine, or proline biosynthesis, or by adding corresponding exogenous amino acids, resulted in rhizosphere alkalization. Interestingly, exogenous amino acids caused bacterial overgrowth in a gluconic acid-deficient mutants. Our findings show that bacterial amino acid biosynthesis contributes to acidification by preventing accumulation of glutamate precursors and the resulting alkalization. Collectively this work shows that by regulating nutrient availability, plants have the potential to regulate their immune homeostasis in the rhizosphere microbiome.


Author(s):  
Sivasankar Kakku ◽  
Shripal M. Gaikwad ◽  
Shashank Gaikwad ◽  
Suyogkumar V. Taralkar ◽  
Sarath Babu Billa ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanqiang Ding ◽  
Zhuolin Yi ◽  
Yang Fang ◽  
Sulan He ◽  
Yuming Li ◽  
...  

Phosphate-solubilizing bacteria (PSB) can alleviate available phosphorus (AP)-deficiency without causing environmental pollution like chemical phosphate fertilizers. However, the research and application of PSB on the barren rocky soil is very rare. We screened six PSB from sweetpotato rhizosphere rocky soil. Among them, Ochrobactrum haematophilum FP12 showed the highest P-solubilizing ability of 1,085.00 mg/L at 7 days, which was higher than that of the most reported PSB. The assembled genome of PSB FP12 was 4.92 Mb with P-solubilizing and plant growth-promoting genes. In an AP-deficient environment, according to transcriptome and metabolomics analysis, PSB FP12 upregulated genes involved in gluconic acid synthesis and the tricarboxylic acid cycle, and increased the concentration of gluconic acid and malic acid, which would result in the enhanced P-solubilizing ability. Moreover, a series of experiments in the laboratory and field confirmed the efficient role of the screened PSB on significantly increasing AP in the barren rocky soil and promoting sweetpotato yield. So, in this study, we screened highly efficient PSB, especially suitable for the barren rocky soil, and explored the P-solubilizing mechanism. The research will reduce the demand for chemical phosphate fertilizers and promote the environment-friendly agricultural development.


LWT ◽  
2021 ◽  
pp. 112937
Author(s):  
Ruyi Li ◽  
Yongquan Xu ◽  
Jianxin Chen ◽  
Fang Wang ◽  
Chun Zou ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Li Li ◽  
Xue Qiang Zhao ◽  
Xiao Ying Dong ◽  
Jian Feng Ma ◽  
Ren Fang Shen

Phosphorus (P) deficiency is one of the major factors limiting plant growth in acid soils, where most P is fixed by toxic aluminum (Al). Phosphate-solubilizing bacteria (PSBs) are important for the solubilization of fixed P in soils. Many PSBs have been isolated from neutral and calcareous soils, where calcium phosphate is the main P form, whereas PSBs in acid soils have received relatively little attention. In this study, we isolated a PSB strain from the rhizosphere of Lespedeza bicolor, a plant well adapted to acid soils. On the basis of its 16S rRNA gene sequence, this strain was identified as a Nguyenibacter species and named L1. After incubation of Nguyenibacter sp. L1 for 48 h in a culture medium containing AlPO4 as the sole P source, the concentration of available P increased from 10 to 225 mg L–1, and the pH decreased from 5.5 to 2.5. Nguyenibacter sp. L1 exhibited poor FePO4 solubilization ability. When the pH of non-PSB-inoculated medium was manually adjusted from 5.5 to 2.5, the concentration of available P only increased from 6 to 65 mg L–1, which indicates that growth medium acidification was not the main contributor to the solubilization of AlPO4 by Nguyenibacter sp. L1. In the presence of glucose, but not fructose, Nguyenibacter sp. L1 released large amounts of gluconic acid to solubilize AlPO4. Furthermore, external addition of gluconic acid enhanced AlPO4 solubilization and reduced Al toxicity to plants. We conclude that secretion of gluconic acid by Nguyenibacter sp. L1, which is dependent on glucose supply, is responsible for AlPO4 solubilization as well as the alleviation of Al phytotoxicity by this bacterial strain.


Sign in / Sign up

Export Citation Format

Share Document