Integration of low-temperature transcritical CO2 Rankine cycle in natural gas-fired combined cycle (NGCC) with post-combustion CO2 capture

2013 ◽  
Vol 12 ◽  
pp. 213-219 ◽  
Author(s):  
P.A. Marchioro Ystad ◽  
A.A. Lakew ◽  
O. Bolland
2006 ◽  
Vol 129 (2) ◽  
pp. 338-351 ◽  
Author(s):  
Alessandro Corradetti ◽  
Umberto Desideri

Steam methane reforming is the most common process for producing hydrogen in the world. It currently represents the most efficient and mature technology for this purpose. However, because of the high investment costs, this technology is only convenient for large sizes. Furthermore, the cooling of syngas and flue gas produce a great amount of excess steam, which is usually transferred outside the process, for heating purposes or industrial applications. The opportunity of using this additional steam to generate electric power has been studied in this paper. In particular, different power plant schemes have been analyzed, including (i) a Rankine cycle, (ii) a gas turbine simple cycle, and (iii) a gas-steam combined cycle. These configurations have been investigated with the additional feature of CO2 capture and sequestration. The reference plant has been modeled according to state-of-the-art of commercial hydrogen plants: it includes a prereforming reactor, two shift reactors, and a pressure swing adsorption unit for hydrogen purification. The plant has a conversion efficiency of ∼75% and produces 145,000Sm3∕hr of hydrogen (equivalent to 435MW on the lower-heating-volume basis) and 63t∕hr of superheated steam. The proposed power plants generate, respectively, 22MW (i), 36MW (ii), and 87MW (iii) without CO2 capture. A sensitivity analysis was carried out to determine the optimum size for each configuration and to investigate the influence of some parameters, such as electricity, natural gas, and steam costs.


Author(s):  
Alessandro Corradetti ◽  
Umberto Desideri

Steam Methane Reformer is the commonest process for producing hydrogen in the world. It currently represents the most efficient and mature technology for this purpose. However, due to the high investment costs, this technology is convenient for large sizes only. Furthermore, the cooling of syngas and flue gas produce a great amount of excess steam, which is usually transferred outside the process, for heating purposes or industrial applications. The opportunity of using this additional steam to generate electric power has been studied in this paper. In particular different power plant schemes have been analyzed, including: (i) a Rankine cycle; (ii) a gas turbine simple cycle; (iii) a gas-steam combined cycle. These configurations have been investigated with the additional feature of CO2 capture and sequestration. The reference plant has been modeled according to the state of art of commercial hydrogen plants: it includes a pre-reforming reactor, two shift reactors and a pressure swing adsorption unit for hydrogen purification. The plant has a conversion efficiency of approximately 75% and produces 145,000 Stm3/hr of hydrogen (equivalent to 435 MW on LHV basis) and 63 t/hr of superheated steam. The proposed power plants generate respectively 22 MW (i), 36 MW (ii) and 87 MW (iii) without CO2 capture. A sensitivity analysis was carried out to determine the optimum size for each configuration and to investigate the influence of some parameters, such as electricity, natural gas and steam costs.


2014 ◽  
Vol 63 ◽  
pp. 2394-2401
Author(s):  
Satoshi Saito ◽  
Norihide Egami ◽  
Toshihisa Kiyokuni ◽  
Mitsuru Udatsu ◽  
Hideo Kitamura ◽  
...  

2009 ◽  
Vol 1 (1) ◽  
pp. 3835-3842 ◽  
Author(s):  
Cristina Botero ◽  
Matthias Finkenrath ◽  
Michael Bartlett ◽  
Robert Chu ◽  
Gerald Choi ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 543 ◽  
Author(s):  
Manuele Gatti ◽  
Emanuele Martelli ◽  
Daniele Di Bona ◽  
Marco Gabba ◽  
Roberto Scaccabarozzi ◽  
...  

The objective of this study is to assess the technical and economic potential of four alternative processes suitable for post-combustion CO2 capture from natural gas-fired power plants. These include: CO2 permeable membranes; molten carbonate fuel cells (MCFCs); pressurized CO2 absorption integrated with a multi-shaft gas turbine and heat recovery steam cycle; and supersonic flow-driven CO2 anti-sublimation and inertial separation. A common technical and economic framework is defined, and the performance and costs of the systems are evaluated based on process simulations and preliminary sizing. A state-of-the-art natural gas combined cycle (NGCC) without CO2 capture is taken as the reference case, whereas the same NGCC designed with CO2 capture (using chemical absorption with aqueous monoethanolamine solvent) is used as a base case. In an additional benchmarking case, the same NGCC is equipped with aqueous piperazine (PZ) CO2 absorption, to assess the techno-economic perspective of an advanced amine solvent. The comparison highlights that a combined cycle integrated with MCFCs looks the most attractive technology, both in terms of energy penalty and economics, i.e., CO2 avoided cost of 49 $/tCO2 avoided, and the specific primary energy consumption per unit of CO2 avoided (SPECCA) equal to 0.31 MJLHV/kgCO2 avoided. The second-best capture technology is PZ scrubbing (SPECCA = 2.73 MJLHV/kgCO2 avoided and cost of CO2 avoided = 68 $/tCO2 avoided), followed by the monoethanolamine (MEA) base case (SPECCA = 3.34 MJLHV/kgCO2 avoided and cost of CO2 avoided = 75 $/tCO2 avoided), and the supersonic flow driven CO2 anti-sublimation and inertial separation system and CO2 permeable membranes. The analysis shows that the integrated MCFC–NGCC systems allow the capture of CO2 with considerable reductions in energy penalty and costs.


2019 ◽  
Vol 12 (7) ◽  
pp. 2161-2173 ◽  
Author(s):  
Rebecca L. Siegelman ◽  
Phillip J. Milner ◽  
Eugene J. Kim ◽  
Simon C. Weston ◽  
Jeffrey R. Long

As natural gas supplies a growing share of global primary energy, new research efforts are needed to develop adsorbents for carbon capture from gas-fired power plants alongside efforts targeting emissions from coal-fired plants.


Author(s):  
Abdullah Al-Abdulkarem ◽  
Yunho Hwang ◽  
Reinhard Radermacher

Although natural gas is considered as a clean fuel compared to coal, natural gas combined cycles (NGCC) emit high amounts of CO2 at the plant site. To mitigate global warming caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, implementing this CCS system increases the energy consumption by about 15–20%. Innovative processes integration and waste heat utilization can be used to improve the energy efficiency. Four waste heat sources and five potential uses were uncovered and compared using a parameter defined as the ratio of power gain to waste heat. A new integrated CCS configuration is proposed, which integrates the NGCC with the CO2 removal and CO2 compression cycles. HYSYS simulation software was used to simulate the CO2 removal cycle using monoethanolamine (MEA) solution, NGCC, CO2 compression cycle, CO2 liquefaction cycles and Organic Rankine Cycle (ORC). The developed models were validated against experimental data from the literature with good agreements. Two NGCC with steam extraction configurations were optimized using Matlab GA tool coupled with HYSYS simulation software. Efficiency improvement in one of the proposed CCS configurations that uses the available waste heat in absorption chillers to cool the inlet-air to the gas turbine and to run an ORC, and uses the developed CO2 liquefaction and pumping instead of multistage compression is 6.04 percent point, which represents 25.91 MW more power than the conventional CCS configuration.


2017 ◽  
Vol 143 (5) ◽  
pp. 04017025
Author(s):  
Zhongyuan Huang ◽  
Jin Li ◽  
Chaowen Jing ◽  
Hongguang An ◽  
Yiying Tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document