Study on the chemical absorption main heat exchanger and process modification for 150kt/y CCS demonstration project

2021 ◽  
Vol 112 ◽  
pp. 103470
Author(s):  
Mengxiang Fang ◽  
Wenfeng Dong ◽  
Yi Zhang ◽  
Rui Zhao ◽  
Yan Li ◽  
...  
2020 ◽  
Vol 172 ◽  
pp. 02003
Author(s):  
Christian A. Hviid ◽  
Daria Zukowska-Tejsen ◽  
Vilhjalmur Nielsen

This paper reports on a demonstration project where a section of a school building with eight classrooms and three other rooms was retrofitted with a mechanical balanced ventilation system with an integrated evaporative cooling unit. The floor area was 537 m2. Especially in temperate climates, evaporative cooling has unreleased potential as an alternative solution to conventional cooling technologies, and by combining it with harvesting of rainwater, the solution aligns well with a future with higher cooling needs, need for climate adaptation, and the overall sustainability agenda. The cooling unit works by storing, filtering and spraying rainwater into the return air. The water evaporates, cools the return air, and through an innovative corrosion-resilient plastic heat exchanger, the return air then absorbs heat from the supply air. In this way indoor climate problems caused by humidification of the indoor air are avoided. The demonstration was running in the May and June 2019. The results show that the specific fan power increased approx. 500 J/m3 when the evaporative cooling pumps were activated and that the available cooling power – depending on the moisture content of the return air – was fluctuating in the range 20-30 W/m2. The peak rainwater consumption was approx. 1 m3/day. The results show that implementation of evaporative cooling with harvested rainwater is an attractive and sustainable alternative to mechanical compressor cooling.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Sign in / Sign up

Export Citation Format

Share Document