scholarly journals Evaluation of subgrid-scale models in large-eddy simulation of flow past a two-dimensional block

2013 ◽  
Vol 44 ◽  
pp. 301-311 ◽  
Author(s):  
Wai-Chi Cheng ◽  
Fernando Porté-Agel
1999 ◽  
Vol 122 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Ahmad Sohankar ◽  
L. Davidson ◽  
C. Norberg

Large eddy simulation of flow past a rigid prism of a square cross section with one side facing the oncoming flow at Re=2.2×104 is performed. An incompressible code is used employing an implicit fractional step method finite volume with second-order accuracy in space and time. Three different subgrid scale models: the Smagorinsky, the standard dynamic, and a dynamic one-equation model, are applied. The influence of finer grid, shorter time step, and larger computational spanwise dimension is investigated. Some global quantities, such as the Strouhal number and the mean and rms values of lift and drag, are computed. A scheme for correcting the global results for blockage effects is presented. By comparison with experiments, the results produced by the dynamic one-equation one give better agreement with experiments than the other two subgrid models. [S0098-2202(00)01001-4]


2021 ◽  
Vol 1802 (4) ◽  
pp. 042088
Author(s):  
Zhipeng Feng ◽  
Huanhuan Qi ◽  
Xuan Huang ◽  
Shuai Liu ◽  
Jian Liu

2018 ◽  
Vol 180 ◽  
pp. 02054
Author(s):  
Martin Lasota ◽  
Petr Šidlof

The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.


1997 ◽  
Vol 9 (8) ◽  
pp. 2405-2419 ◽  
Author(s):  
M. V. Salvetti ◽  
Y. Zang ◽  
R. L. Street ◽  
S. Banerjee

Sign in / Sign up

Export Citation Format

Share Document