Time-resolved particle image velocimetry measurements of a single impinging jet in the upper plenum of a scaled facility of high temperature gas-cooled reactors

2019 ◽  
Vol 76 ◽  
pp. 113-129 ◽  
Author(s):  
Anas Alwafi ◽  
Thien Nguyen ◽  
Yassin Hassan ◽  
N.K. Anand
Author(s):  
Jae-Young Lee ◽  
Sa-Ya Lee

The flow visualization in the complicated flow geometry of the pebble bed of the high temperature gas-cooled reactor is investigated to identify the stagnation points at which internal hot spots are expected. A particle image velocimetry method was employed to visualize flow for the pebble bed in the structure of the face centered cubic. The wind tunnel was designed to provide the same Reynolds number of 2.1614×104 as the pebble bed nuclear reactor. Scaling law determined the diameter of the pebble as 120 mm, which is two times bigger than the reference when we use air as a coolant rather than helium. The present scaled up design reduces the load of high speed imaged acquisition and the flow field measured by 4000 frames/s. It was found that the present method identified flow field successfully, including the stagnation points suspected to produce hot spots on the surface of the pebble bed. The present data are useful in evaluating the three-dimensional computational fluid dynamics analysis.


2021 ◽  
Vol 917 ◽  
Author(s):  
Everest G. Sewell ◽  
Kevin J. Ferguson ◽  
Vitaliy V. Krivets ◽  
Jeffrey W. Jacobs

Abstract


Author(s):  
Jianjun Feng ◽  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

The truly time-variant unsteady flow in a low specific speed radial diffuser pump stage has been investigated by time-resolved Particle Image Velocimetry (PIV) measurements. The measurements are conducted at the midspan of the blades for the design condition and also for some severe part-load conditions. The instantaneous flow fields among different impeller channels are analyzed and compared in detail, and more attention has been paid to flow separations at part-load conditions. The analysis of the measured results shows that the flow separations at two adjacent impeller channels are quite different at some part-load conditions. The separations generally exhibit a two-channel characteristic.


Author(s):  
Mohammed El Adawy ◽  
Morgan Heikal ◽  
bin Abd. Aziz Abd. Rashid

Abstract RICARDO-VECTIS CFD simulation of the in-cylinder air flow was first validated with those of the experimental results from high-speed particle image velocimetry (PIV) measurements taking cognisant of the mid-cylinder tumble plane. Furthermore, high-speed fuel spray measurements were carried out simultaneously with the intake-generated tumble motion at high valve lift using high-speed time-resolved PIV to chronicle the spatial and time-based development of air/fuel mixture. The effect of injection pressure(32.5 and 35.0 MPa) and pressure variation across the air intake valves(150, 300 and 450 mmH2O) on the interaction process were investigated at valve lift 10 mm where the tumble vortex was fully developed and filled the whole cylinder under steady-state conditions. The PIV results illustrated that the intake generated-tumble motion had a substantial impact on the fuel spray distortion and dispersion inside the cylinder. During the onset of the injection process the tumble motion diverted the spray plume slightly towards the exhaust side before it followed completely the tumble vortex. The fuel spray plume required 7.2 ms, 6.2 ms and 5.9 ms to totally follow the in-cylinder air motion for pressure differences 150, 300 and 450 mmH2O, respectively. Despite, the spray momentum was the same for the same injection pressure, the magnitude of kinetic energy was different for different cases of pressure differences and subsequently the in-cylinder motion strength.


Sign in / Sign up

Export Citation Format

Share Document