Assessment of the SST-IDDES with a shear-layer-adapted subgrid length scale for attached and separated flows

2020 ◽  
Vol 85 ◽  
pp. 108653
Author(s):  
Maochao Xiao ◽  
Yufei Zhang
2016 ◽  
Vol 98 (2) ◽  
pp. 481-502 ◽  
Author(s):  
Ekaterina K. Guseva ◽  
Andrey V. Garbaruk ◽  
Mikhail Kh. Strelets

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Chaoqun Liu ◽  
Ping Lu ◽  
Lin Chen ◽  
Yonghua Yan

This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.


2009 ◽  
Vol 626 ◽  
pp. 67-109 ◽  
Author(s):  
R. KNAUS ◽  
C. PANTANO

Velocity, mixture fraction and temperature spectra obtained from five direct numerical simulations of non-reacting and reacting shear layers, using the infinitely fast chemistry approximation, are analysed. Two different global chemical reactions corresponding to methane and hydrogen combustion with air, respectively, are considered. The effect of heat release, i.e. density variation, on the inertial and dissipation turbulence subrange of the spectra is investigated. Analysis of the database supports the experimentally available measurements of spectra in turbulent reacting flows showing that heat release effects can be scaled out by utilizing Favre-averaged (density-weighted) large-scale turbulence quantities. This is supported by the simulation results for velocity and mixture fraction in our moderate-Reynolds-number flows but it appears to be less supported in the dissipation subrange of the temperature spectra. The departure from universal scaling using Favre-averaged quantities in the temperature spectrum, which is evident in the dissipation subrange, appears to be caused by the strong nonlinearity of the state relationship relating the mixture fraction to the temperature, as has been suggested previously. These effects are less pronounced at intermediate wavenumbers. Analysis suggests that the nonlinear state relationship and the spectra of mixture fraction moments can be used to reconstruct the temperature spectrum across the flow. Moreover, the governing equation for the temperature variance is analysed to identify a possible surrogate for the overall rate of dissipation of temperature fluctuations and their corresponding dissipation length scale. This scaling analysis is then used to separate planes across the shear layer where the temperature dissipation length scale is alike that of the mixture fraction from regions where smaller length scales are present, and are evidenced in the dissipation subrange using Kolmogorov scaling. In our simulations, these regions correspond to the centre of the shear layer and the mean flame location. The new estimate for the temperature dissipation length scale is able to collapse the compensated spectra profiles at all planes across the shear layer for all simulations.


2018 ◽  
Vol 849 ◽  
pp. 1096-1119 ◽  
Author(s):  
D. C. Lander ◽  
D. M. Moore ◽  
C. W. Letchford ◽  
M. Amitay

Scaling characteristics, essential to the mechanisms of transition in square-prism shear layers, were explored experimentally. In particular, the evolution of the dominant instability modes as a function of Reynolds number were reported in the range $1.5\times 10^{4}\lesssim Re_{D}\lesssim 7.5\times 10^{4}$. It was found that the ratio between the shear layer frequency and the shedding frequency obeys a power-law scaling relation. Adherence to the power-law relationship, which was derived from hot-wire measurements, has been supported by two additional and independent scaling considerations, namely, by particle image velocimetry measurements to observe the evolution of length and velocity scales in the shear layer during transition, and by comparison to direct numerical simulations to illuminate the properties of the front-face boundary layer. The nonlinear dependence of the shear layer instability frequency is sustained by the influence of $Re_{D}$ on the thickness of the laminar front-face boundary layer. In corroboration with the original scaling argument for the circular cylinder, the length scale of the shear layer was the only source of nonlinearity in the frequency ratio scaling, within the range of Reynolds numbers reported. The frequency ratio scaling may therefore be understood by the influence of $Re_{D}$ on the appropriate length scale of the shear layer. This length scale was observed to be the momentum thickness evaluated at a transition point, defined where the Kelvin–Helmholtz instability saturates.


1972 ◽  
Vol 52 (1) ◽  
pp. 113-135 ◽  
Author(s):  
P. Bradshaw ◽  
F. Y. F. Wong

Existing experiments on the low-speed flow downstream of steps and fences, and some new measurements downstream of a backward-facing step, are used to demonstrate the complicated nature of the flow in the reattachment region and its effect on the slow non-monotonic return of the shear layer to the ordinary boundary-layer state. A key feature of the flow is found to be the splitting of the shear layer at reattachment, where part of the flow is deflected upstream into the recirculating flow region to supply the entrainment; the part of the flow that continues downstream suffers a pronounced decrease in eddy length scale, evidently because the larger eddies are torn in two. This phenomenon will occur in all cases where a shear layer reattaches after a prolonged region of separation, either at low speed or in supersonic flow. For simplicity, the discussion in the present paper is confined to low-speed flows.


2017 ◽  
Vol 829 ◽  
pp. 31-64 ◽  
Author(s):  
G. E. Elsinga ◽  
T. Ishihara ◽  
M. V. Goudar ◽  
C. B. da Silva ◽  
J. C. R. Hunt

The scaling of turbulent motions is investigated by considering the flow in the eigenframe of the local strain-rate tensor. The flow patterns in this frame of reference are evaluated using existing direct numerical simulations of homogeneous isotropic turbulence over a Reynolds number range from $Re_{\unicode[STIX]{x1D706}}=34.6$ up to 1131, and also with reference to data for inhomogeneous, anisotropic wall turbulence. The average flow in the eigenframe reveals a shear layer structure containing tube-like vortices and a dissipation sheet, whose dimensions scale with the Kolmogorov length scale, $\unicode[STIX]{x1D702}$. The vorticity stretching motions scale with the Taylor length scale, $\unicode[STIX]{x1D706}_{T}$, while the flow outside the shear layer scales with the integral length scale, $L$. Furthermore, the spatial organization of the vortices and the dissipation sheet defines a characteristic small-scale structure. The overall size of this characteristic small-scale structure is $120\unicode[STIX]{x1D702}$ in all directions based on the coherence length of the vorticity. This is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Comparing the overall size of the characteristic small-scale structure with the largest flow scales and the vorticity stretching motions on the scale of $4\unicode[STIX]{x1D706}_{T}$ shows that transitions in flow structure occur where $Re_{\unicode[STIX]{x1D706}}\approx 45$ and 250. Below these respective transitional Reynolds numbers, the small-scale motions and the vorticity stretching motions are progressively less well developed. Scale interactions are examined by decomposing the average shear layer into a local flow, which is induced by the shear layer vorticity, and a non-local flow, which represents the environment of the characteristic small-scale structure. The non-local strain is $4\unicode[STIX]{x1D706}_{T}$ in width and height, which is consistent with observations in high Reynolds number flow of a $4\unicode[STIX]{x1D706}_{T}$ wide instantaneous shear layer with many $\unicode[STIX]{x1D702}$-scale vortical structures inside (Ishihara et al., Flow Turbul. Combust., vol. 91, 2013, pp. 895–929). In the average shear layer, vorticity aligns with the intermediate principal strain at small scales, while it aligns with the most stretching principal strain at larger scales, consistent with instantaneous turbulence. The length scale at which the alignment changes depends on the Reynolds number. When conditioning the flow in the eigenframe on extreme dissipation, the velocity is strongly affected over large distances. Moreover, the associated peak velocity remains Reynolds number dependent when normalized by the Kolmogorov velocity scale. It signifies that extreme dissipation is not simply a small-scale property, but is associated with large scales at the same time.


Sign in / Sign up

Export Citation Format

Share Document