temperature spectra
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 23)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 2140 (1) ◽  
pp. 012028
Author(s):  
V A Kalytka ◽  
A D Mekhtiev ◽  
P Sh Madi ◽  
A V Bashirov

Abstract Upon based the finite difference methods construct the solutions for Liouville quantum kinetic equation linearized by the external field, in complex with the stationary Schrodinger equation and the Poisson operator equation, for an ensemble of non-interacting hydrogen ions (protons) migrating in the field of a crystal lattice perturbed by a variable polarizing field. The influence of the phonon subsystem is not taken into account. The equilibrium (non-balanced) proton density matrix is calculated using quantum Boltzmann statistics. The temperature spectra of dielectric losses tangent angle for hydrogen bonded crystals (HBC) in a wide temperature range (50–550 K) are calculated. At the theoretical level detected the effects of nano-crystalline states (1–10 nm) during the polarization of HBC in the region of ultra-low temperatures (4–25 K).


2021 ◽  
Author(s):  
◽  
Rimpy Kinger

<p>Burnt or fired archaeological artefacts often retain a record of the magnetic field in which they were last heated and cooled. Over the past four years we have collected oriented hangi stones from 10 archaeological sites spread across the North and South Islands of New Zealand. The stones vary in lithology from andesites, originating from the central North Island volcanoes, favoured by Maori for their durability and with remanent magnetization up to 30 A/m, to sandstones and schists from the main axial ranges, with magnetizations as weak as 10-4 A/m. Radiocarbon dating of charcoal fragments retrieved from amongst the stones indicates that the sites span from ca. 1400 AD to the present.  In all cases, we have independently oriented and retrieved several stones, and we have made several samples from each stone, either by drilling (standard cylindrical samples) or sawing (pseudo-cubes) in the laboratory. We have calculated site mean palaeomagnetic directions (Dec between 1.5o and 19.6o and Inc between -52.2o and -68.3o) from principal component analysis of thermal demagnetization and alternating field demagnetization data, discarding the data of stones that show evidence of disturbance after cooling. The directions are in good agreement with recently published palaeosecular variation records from lake sediments. We have carried out palaeointensity experiments using the Coe/Thellier method with pTRM and tail checks, and with selection criteria modified to the situation. Palaeointensities range from 50μT to 77μT. Rock magnetic experiments contribute to our understanding of the mineralogy, domain state and blocking temperature spectra.  We compare our data with predictions of the global field models ARCH3k and gufm1, and suggest that the addition of our new data will improve these models for the SW Pacific region for the most recent time period. Archaeomagnetic measurements are also used to date hangi sites by matching the palaeo-direction to an established archaeomagnetic dating model, NZPSV1k. Archaeomagnetic dating is used to resolve ambiguities in the calibration of radiocarbon dates, and shows up inconsistencies due to unreliable source material for radiocarbon dating. Archaeomagnetic dating and radiocarbon dating results are combined to give the best estimates of the best age of the hangi sites.</p>


2021 ◽  
Author(s):  
◽  
Rimpy Kinger

<p>Burnt or fired archaeological artefacts often retain a record of the magnetic field in which they were last heated and cooled. Over the past four years we have collected oriented hangi stones from 10 archaeological sites spread across the North and South Islands of New Zealand. The stones vary in lithology from andesites, originating from the central North Island volcanoes, favoured by Maori for their durability and with remanent magnetization up to 30 A/m, to sandstones and schists from the main axial ranges, with magnetizations as weak as 10-4 A/m. Radiocarbon dating of charcoal fragments retrieved from amongst the stones indicates that the sites span from ca. 1400 AD to the present.  In all cases, we have independently oriented and retrieved several stones, and we have made several samples from each stone, either by drilling (standard cylindrical samples) or sawing (pseudo-cubes) in the laboratory. We have calculated site mean palaeomagnetic directions (Dec between 1.5o and 19.6o and Inc between -52.2o and -68.3o) from principal component analysis of thermal demagnetization and alternating field demagnetization data, discarding the data of stones that show evidence of disturbance after cooling. The directions are in good agreement with recently published palaeosecular variation records from lake sediments. We have carried out palaeointensity experiments using the Coe/Thellier method with pTRM and tail checks, and with selection criteria modified to the situation. Palaeointensities range from 50μT to 77μT. Rock magnetic experiments contribute to our understanding of the mineralogy, domain state and blocking temperature spectra.  We compare our data with predictions of the global field models ARCH3k and gufm1, and suggest that the addition of our new data will improve these models for the SW Pacific region for the most recent time period. Archaeomagnetic measurements are also used to date hangi sites by matching the palaeo-direction to an established archaeomagnetic dating model, NZPSV1k. Archaeomagnetic dating is used to resolve ambiguities in the calibration of radiocarbon dates, and shows up inconsistencies due to unreliable source material for radiocarbon dating. Archaeomagnetic dating and radiocarbon dating results are combined to give the best estimates of the best age of the hangi sites.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1277
Author(s):  
Zdeněk Němeček ◽  
Jana Šafránková ◽  
František Němec ◽  
Tereza Ďurovcová ◽  
Alexander Pitňa ◽  
...  

Turbulent cascade transferring the free energy contained within the large scale fluctuations of the magnetic field, velocity and density into the smaller ones is probably one of the most important mechanisms responsible for heating of the solar corona and solar wind, thus the turbulent behavior of these quantities is intensively studied. The temperature is also highly fluctuating quantity but its variations are studied only rarely. There are probably two reasons, first the temperature is tensor and, second, an experimental determination of temperature variations requires knowledge of the full velocity distribution with an appropriate time resolution but such measurements are scarce. To overcome this problem, the Bright Monitor of the Solar Wind (BMSW) on board Spektr-R used the Maxwellian approximation and provided the thermal velocity with a 32 ms resolution, investigating factors influencing the temperature power spectral density shape. We discuss the question whether the temperature spectra determined from Faraday cups are real or apparent and analyze mutual relations of power spectral densities of parameters like the density, parallel and perpendicular components of the velocity and magnetic field fluctuations. Finally, we compare their spectral slopes with the slopes of the thermal velocity in both inertial and kinetic ranges and their evolution in course of solar wind expansion.


2021 ◽  
Vol 68 (5) ◽  
pp. 867-872
Author(s):  
M. S. Khristin ◽  
T. N. Smolova ◽  
V. D. Kreslavski

Abstract The dynamics of changes in the photochemical activity of photosystem II (PSII) and low-temperature spectra at 77 K in the first leaves of 11-day winter wheat plants Triticum aestivum L., as well as structural changes in chlorophyll-protein complexes (CPC) of thylakoid membranes during recovery after a short-term (20 min) heating at a temperature of 42°C, were studied. Changes in the Fv/Fm, F735/F695, and F735/F685 ratios indicate inhibition of PSII immediately after heating. Using nondenaturing electrophoresis, it was shown that the light-harvesting Chl a/b complex of PSII does not aggregate immediately after heating but after several hours, after 6 h the desagregation of CPC was observed, which was consistent with an increase in the Fv/Fm ratio upon recovery. The influence of temperature, intensity, and quality of light (white, blue, and red light) on the recovery of PSII activity and low-temperature fluorescence spectra was studied. It was concluded that the recovery is a photo-activated low-energy process, independent of photosynthesis, and the most effective in blue light.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Abraão J. S. Capistrano

AbstractWe test a four dimensional cosmological model embedded in a five dimensional bulk space by means of the dynamical Nash-Greene theorem. In a fluid approach, we apply a joint likelihood analysis to the data with the Markov Chain Monte Carlo (MCMC) method for cosmological parameter estimation. We use recent datasets as the “Gold 2018” growth-rate data, the Planck2018/$$\varLambda $$ Λ CDM data on the cosmic microwave background (CMB) anisotropies, the Baryon acoustic oscillations (BAO) measurements, the Pantheon Supernovae type Ia and the data on the Hubble parameter H(z) with redshift ranging from $$0.01< z < 2.3$$ 0.01 < z < 2.3 . Performing the Information Criterion (IC) analysis, we find that the present model is in very good agreement with observations with a close statistical equivalence with wCDM cosmologies at 1-$$\sigma $$ σ level with a slightly larger growth profiles. By modifications of () code, we make a comparison between the models on their unlensed CMB TT temperature spectra. Moreover, the proposed model presents a low power spectrum by the reduction of the ISW effect at lower multipoles. We also find that the overall percentage relative difference of the growth index $$\varDelta \gamma (\%)$$ Δ γ ( % ) is up to 1.4$$\%$$ % as compared to wCDM pattern in sub-horizon scales.


2021 ◽  
Vol 14 (5) ◽  
pp. 3501-3521
Author(s):  
Pavel Alekseychik ◽  
Gabriel Katul ◽  
Ilkka Korpela ◽  
Samuli Launiainen

Abstract. High-resolution thermal infrared (TIR) imaging is opening up new vistas in biosphere–atmosphere heat exchange studies. The rapidly developing unmanned aerial systems (UASs) and specially designed cameras offer opportunities for TIR survey with increasingly high resolution, reduced geometric and radiometric noise, and prolonged flight times. A state-of-the-art science platform is assembled using a Matrice 210 V2 drone equipped with a Zenmuse XT2 thermal camera and deployed over a pristine boreal peatland with the aim of testing its performance in a heterogeneous sedge-fen ecosystem. The study utilizes the capability of the UAS platform to hover for prolonged times (about 20 min) at a height of 500 m a.g.l. while recording high frame rate (30 Hz) TIR videos of an area of ca. 430 × 340 m. A methodology is developed to derive thermal signatures of near-ground coherent turbulent structures impinging on the land surface, surface temperature spectra, and heat fluxes from the retrieved videos. The size, orientation, and movement of the coherent structures are computed from the surface temperature maps, and their dependency on atmospheric conditions is examined. A range of spectral and wavelet-based approaches are used to infer the properties of the dominant turbulent scene structures. A ground-based eddy-covariance system and an in situ meteorological setup are used for reference.


2021 ◽  
Author(s):  
Leonid Surovitskii ◽  
Andrei Kosterov ◽  
Mary Kovacheva ◽  
Maria Kostadinova-Avramova ◽  
Natalya Salnaya ◽  
...  

&lt;p&gt;The three-axis isothermal remanent magnetization (IRM) test (the Lowrie test; Lowrie, 1990, Geophys. Res. Lett., 17, 159-162) is a useful tool to identify ferromagnetic minerals by their coercivity and unblocking temperature spectra. In this study, we explore a variant of the Lowrie test in which measurements are conducted directly at elevated temperatures, and compare its performance with the results of the conventional stepwise procedure. IRM acquisition fields&amp;#160;applied along three orthogonal axes were 1 T, 200 mT and 40 mT, respectively. The field value for the soft component was chosen so as to include&amp;#160;ca. 90% of its coercivity spectrum. For the hard component the maximum available field was used. The test is applied to characterize the magnetic mineralogy of archaeological baked clays and bricks from Bulgaria and Russia. Bulgarian samples are baked clays from various Neolithic (5700-5300 BCE) archaeological sites and several bricks of the Roman epoch (III-IV c. AD). Samples from Russia are bricks originating from several regions with ages from XIII to early XIX c. AD.&lt;/p&gt;&lt;p&gt;The low- and intermediate-coercivity components of IRM in the studied samples are typically demagnetized by 520-550&amp;#176;C, compatible with substituted or cation-deficient magnetite or, possibly, maghemite. This is supported by the absence of the Verwey transition in studied samples (Kosterov et al., 2021, Geophys. J. Int., 224(2), 1256-1271). The high-coercivity component appears to be carried by two mineral phases with very distinct unblocking temperatures, 120-200&amp;#176;C and 500 to 640&amp;#176;C. The first phase is similar to the high coercivity, low unblocking temperature (HCSLT) phase described by McIntosh et al., 2007 (Geophys. Res. Lett., 34, L21302, doi: 10.1029/22007GL031168), and the second one appears to be hematite with variable degree of substitution.&lt;/p&gt;&lt;p&gt;Performance of the high-temperature variant of the Lowrie test compares favorably with the classical procedure, while the former is also significantly faster and yields a superior temperature resolution.&lt;/p&gt;&lt;p&gt;This study is supported by Russian Foundation of the Basic Research, grant 19-55-18006, and by Bulgarian National Science Fund, grant KP-06-Russia-10.&lt;/p&gt;


2020 ◽  
Vol 20 (23) ◽  
pp. 15191-15206 ◽  
Author(s):  
André Welti ◽  
E. Keith Bigg ◽  
Paul J. DeMott ◽  
Xianda Gong ◽  
Markus Hartmann ◽  
...  

Abstract. Ambient concentrations of ice-forming particles measured during ship expeditions are collected and summarised with the aim of determining the spatial distribution and variability in ice nuclei in oceanic regions. The presented data from literature and previously unpublished data from over 23 months of ship-based measurements stretch from the Arctic to the Southern Ocean and include a circumnavigation of Antarctica. In comparison to continental observations, ship-based measurements of ambient ice nuclei show 1 to 2 orders of magnitude lower mean concentrations. To quantify the geographical variability in oceanic areas, the concentration range of potential ice nuclei in different climate zones is analysed by meridionally dividing the expedition tracks into tropical, temperate and polar climate zones. We find that concentrations of ice nuclei in these meridional zones follow temperature spectra with similar slopes but vary in absolute concentration. Typically, the frequency with which specific concentrations of ice nuclei are observed at a certain temperature follows a log-normal distribution. A consequence of the log-normal distribution is that the mean concentration is higher than the most frequently measured concentration. Finally, the potential contribution of ship exhaust to the measured ice nuclei concentration on board research vessels is analysed as function of temperature. We find a sharp onset of the influence at approximately −36 ∘C but none at warmer temperatures that could bias ship-based measurements.


Sign in / Sign up

Export Citation Format

Share Document