temperature spectrum
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 3)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Cinzia Menapace ◽  
Bhupendra Sharma ◽  
Kei Ameyama

The hot deformation behavior of a harmonic-structured pure nickel has been studied and compared with the hot deformability of a homogeneously structured nickel. Both materials were produced via the powder metallurgy route through the Spark Plasma Sintering (SPS) of mechanical milled and un-milled powders. Hot deformation was evaluated through compression tests at three different temperatures (400 °C, 800 °C, and 1300 °C), covering a wide range in the homologous temperature spectrum for Ni (from 0.39 to 0.91), and at three different strain rates (0.001, 0.01, and 0.1 s−1). The evaluation of the stress–strain curves showed a higher hot compression resistance for the harmonic-structured nickel, together with higher strain hardening and strain rate sensitivity, thanks to the peculiar microstructural features of this material. Through the metallographic analysis of the specimens after hot compression, different mechanisms were identified as responsible for the deformation behavior in relation to the temperature of testing. While at 400 °C dynamic recrystallization has slightly started, at 800 °C it is widely diffused, and at 1300 °C it is replaced by grain growth and diffusion creep phenomena.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
J. Michael Grappone ◽  
James M. Russell ◽  
Andrew J. Biggin

AbstractHigh-quality data are vital to the research field of paleointensity, which has long suffered from poor-quality and/or sparse data. Previous paleointensity work has established that repeatedly heating specimens increases the opportunity for thermochemical alteration to decrease the reliability of paleointensity data. In addition, recent work has shown that repeatedly heating specimens in paleointensity experiments can also exaggerate the effects of non-ideal, non-single domain grains. Arai plots resulting from paleointensity experiments containing such grains are often curvilinear (two-slope) across most of the specimen’s unblocking temperature spectrum, except in the temperature range nearest to the grains’ Curie temperature. This study tests the following strategy to mitigate these effects: that of performing a Thellier paleointensity experiment using fewer temperature steps that are also concentrated at higher temperatures. For this purpose, we use natural specimens with well-constrained rock magnetic data from the Hawaiian Scientific Observation Hole 1 (SOH1) drill core in paleointensity experiments with starting temperatures ranging from 200 °C to 500+ °C. Those experiments that focused in on the portion of the unblocking temperature spectrum nearest the Curie temperature of the specimen (HiTeCT) had an exceptionally low success rate, whereas those with initial temperatures at comparatively moderate temperatures (200–400 °C) had high success rates (~ 70%). Thermochemical alteration was minimized with a start temperature of 400 °C, but the curvature of the Arai plots had no clear dependance on start temperature. We conclude herein that increasing the start temperature can help avoid the effects of low-temperature alterations. Additionally, we found that the approach of focusing in on the highest temperature range is not a feasible one to apply in paleointensity experiments, in general, and consider this likely to be a result of a lack of intermediate-temperature checks for alteration and insufficient independence of temperature steps. Graphical abstract


Author(s):  
Ofer Shamir ◽  
Chaim I. Garfinkel ◽  
Ori Adam ◽  
Nathan Paldor

AbstractA recent study observed the existence of a salient bias towards the symmetric part of the tropical wavenumber-frequency spectrum. Examination of the tropical Brightness Temperature (BT) spectrum in this note shows that its parity difference, i.e., the difference between its symmetric and anti-symmetric components, is concentrated in regions of the wavenumber-frequency plane corresponding to the spectral bands suggested by Wheeler and Kiladis (1999). In terms of the difference between the spectral power in the symmetric and anti-symmetric components, the spectral bands corresponding to Kelvin waves, Madden-Julian Oscillation, and Rossby waves explain about 31%, 21%, and 13% of the symmetric bias, respectively, while the combined contribution of all the other bands is negligible. The “background” spectrum after filtering out all the spectral bands explains the remaining 35% of the symmetric bias. As these spectral bands were originally designed for filtering convectively coupled equatorial waves, the findings of this note may help estimate the contributions of different wave features to the symmetric bias in the tropical BT spectrum. In addition, these findings may also help better understand the processes responsible for generating the tropical background spectrum.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1692
Author(s):  
Emmanuel K. Ampadu ◽  
Jungdong Kim ◽  
Eunsoon Oh

We fabricated a lateral photovoltaic device for use as infrared to terahertz (THz) detectors by chemically depositing PbS films on titanium substrates. We discussed the material properties of PbS films grown on glass with varying deposition conditions. PbS was deposited on Ti substrates and by taking advantage of the Ti/PbS Schottky junction, we discussed the photocurrent transients as well as the room temperature spectrum response measured by Fourier transform infrared (FTIR) spectrometer. Our photovoltaic PbS device operates at room temperature for wavelength ranges up to 50 µm, which is in the terahertz region, making the device highly applicable in many fields.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Azad Hussain ◽  
Aysha Rehman ◽  
Sohail Nadeem ◽  
M. Riaz Khan ◽  
Alibek Issakhov

The performance of mass transfer rate, friction drag, and heat transfer rate is illustrated in the boundary layer flow region via induced magnetic flux. In this recent analysis, the Buongiorno model is introduced to inspect the induced magnetic flux and radiative and convective kinetic molecular theory of liquid-initiated nanoliquid flow near the stagnant point. The energy equation is modified by radiation efficacy using the application of the Rosseland approximation. Through similarity variables, the available formulated partial differential equations are promoted into the nondimensional structure. The variation of the induced magnetic field near the wall goes up, and very far away, it decays when the size of the radiation characteristic ascends. The velocity amplitude expands by enlargement in the amount of the magnetic parameter, mixed convection, thermophoresis parameter, and fluid characteristic. The nanoparticle concentration reduces if the reciprocal of the magnetic Prandtl number expands. The temperature spectrum declines by enhancing the amount of the magnetic parameter. Drag friction decreases by the increment in the values of radiation and thermophoresis parameters. Heat transport rate increases when there is an increase in the values of Brownian and magnetic parameters. Mass transfer rate increases when there is incline in the values of the magnetic Prandtl and fluid parameter.


2021 ◽  
Author(s):  
Hiroshi Ishimoto ◽  
Masahiro Hayashi ◽  
Yuzo Mano

Abstract. Using data from the Infrared Atmospheric Sounding Interferometer (IASI) measurements of volcanic ash clouds and radiative transfer calculations, we identify the optimal refractive index model for simulating the measured brightness temperature spectrum of volcanic ash material. We assume that the optimal refractive index model has the smallest root mean square of the brightness temperature difference between measurements and simulations for channels in the wavenumber range of 750–1400 cm−1 and compare 21 refractive index models for optical properties of ash particles, including recently published models. From the results of numerical simulations for 164 pixels of IASI measurements for ash clouds from 11 volcanoes, we found that the measured brightness temperature spectrum could be well simulated using certain newly established refractive index models. In the cases of Eyjafjallajökull and Grímsvötn ash clouds, the optimal refractive index models determined through numerical simulation correspond to those deduced from the chemical composition of ash samples for the same volcanic eruption events. This finding suggests that infrared sounder measurement of volcanic ash clouds is an effective approach to estimating the optimal refractive index model. However, discrepancies between the estimated refractive index models based on satellite measurements and the associated volcanic rock types were observed for some volcanic events.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Jan Kiethe ◽  
Lars Timm ◽  
Haggai Landa ◽  
Dimitri Kalincev ◽  
Giovanna Morigi ◽  
...  

2021 ◽  
Vol 63 (12) ◽  
pp. 2138
Author(s):  
Б.К. Кардашев ◽  
К.В. Сапожников

Young's modulus and internal friction of the V-4Ti-4Cr alloy with different hydrogen content were studied in the temperature range of 100 − 300 К at oscillation frequencies of about 100 kHz. It is shown that hydrogenation of the alloy gives rise to a minimum in the temperature dependence of Young's modulus due to the precipitation/dissolution of vanadium monohydride particles, and a relaxation peak in the temperature spectrum of internal friction at temperatures of about 140 К, which can be associated with the Snoek-type hydrogen relaxation caused by the Ti-H interaction.


2020 ◽  
pp. 2150070
Author(s):  
Yuxian Xia ◽  
Yuan Fu ◽  
Jiahua Li ◽  
Xiang Qiu ◽  
Yuehong Qian ◽  
...  

The two-dimensional (2D) turbulent thermal convection is numerically investigated by using Lattice Boltzmann Method. The 2D turbulence is considered as 2D channel flow where the flow is forced by the arrays of adiabatic cylinders placed in the inlet and wall boundary of 2D channel, which is heated uniformly from the inlet as to inspire the paradigmatic motion of thermal convection. It is found that the spacing vortex number density distribution in the large-scale range [Formula: see text], based on the Liutex vortex definition criterion, which is in fair agreement with the Benzi prediction. The energy spectrum of the Liutex field [Formula: see text]. The scaling behavior of full-field energy spectrum in the large scale is [Formula: see text]. The temperature spectrum in the large-scale range is found to be approximate to [Formula: see text], which is according with the Bolgiano theory of 2D buoyancy driven turbulence. The energy flux cascades to the large scale, the enstrophy cascades to small scale. The moments of the energy dissipation field [Formula: see text] coarse grained at the scale [Formula: see text] have the power-law behaviors with the scale [Formula: see text]. The velocity intermittency measured by PDF exists in large-scale range of 2D turbulent thermal convection. The measured scaling exponents [Formula: see text] are determined by a lognormal formula. The measured intermittency parameter is [Formula: see text], which denotes the strong intermittency in the large-scale range of 2D turbulent thermal convection.


Sign in / Sign up

Export Citation Format

Share Document