Effects of the length scale of free-stream turbulence and cylinder size on heat transfer in laminar separated flows

1993 ◽  
Vol 7 (2) ◽  
pp. 139
Author(s):  
S. Torii ◽  
H. Fuse
1989 ◽  
Vol 111 (1) ◽  
pp. 78-86 ◽  
Author(s):  
R. MacMullin ◽  
W. Elrod ◽  
R. Rivir

The effects of the longitudinal turbulence intensity parameter of free-stream turbulence (FST) on heat transfer were studied using the aggressive flow characteristics of a circular tangential wall jet over a constant heat flux surface. Profile measurements of velocity, temperature, integral length scale, and spectra were obtained at downstream locations (2 to 20 x/D) and turbulence intensities (7 to 18 percent). The results indicated that the Stanton number (St) and friction factor (Cf) increased with increasing turbulence intensity. The Reynolds analogy factor (2St/Cf) increased up to turbulence intensities of 12 percent, then became constant, and decreased after 15 percent. This factor was also found to be dependent on the Reynolds number (Rex) and plate configuration. The influence of length scale, as found by previous researchers, was inconclusive at the conditions tested.


1995 ◽  
Vol 117 (3) ◽  
pp. 401-406 ◽  
Author(s):  
K. Dullenkopf ◽  
R. E. Mayle

The effect of length scale in free-stream turbulence is considered for heat transfer in laminar boundary layers. A model is proposed that accounts for an “effective” intensity of turbulence based on a dominant frequency for a laminar boundary layer. Assuming a standard turbulence spectral distribution, a new turbulence parameter that accounts for both turbulence level and length scale is obtained and used to correlate heat transfer data for laminar stagnation flows. The result indicates that the heat transfer for these flows is linearly dependent on the “effective” free-stream turbulence intensity.


Author(s):  
V. P. Maslov ◽  
B. I. Mineev ◽  
K. N. Pichkov ◽  
A. N. Secundov ◽  
A. N. Vorobiev ◽  
...  

A hot-wire technique was used to measure turbulence characteristics in the vicinity of the stagnation line of circular cylinders and a turbine blade model (a chord length of 1 metre). Heat transfer intensity at the stagnation line of the cylinders was also measured by on-surface probes. The experiments were carried out in a wide range of the Reynolds number based on the blade leading edge/cylinder diameter, D (Re = 2.103–2.106) and integral length scale of free-stream turbulence, Le (Le = 0.1–10D) at two values of free stream turbulence intensity, Tu (Tu = 0.02 and 0.10). Along with the experimental data results of the 2D RANS computations are presented of the flow and heat transfer at the circular cylinder with the use of two turbulence models: a two-equation, k-ω SST, model of Menter, and a new two-equation, ν1-L, model developed in the course of the present study.


Author(s):  
R. E. Mayle ◽  
K. Dullenkopf ◽  
A. Schulz

A unified expression for the spectrum of turbulence is developed by asymptotically matching known expressions for small and large wave numbers, and a formula for the one-dimensional spectral function which depends on the turbulence Reynolds number Reλ is provided. In addition, formulas relating all the length scales of turbulence are provided. These relations also depend on Reynolds number. The effects of free-stream turbulence on laminar heat transfer and pre-transitional flow in gas turbines are re-examined in light of these new expressions using our recent thoughts on an ‘effective’ frequency of turbulence and an ‘effective’ turbulence level. The results of this are that the frequency most effective for laminar heat transfer is about 1.3U/Le, where U is the free-stream velocity and Le is the length scale of the eddies containing the most turbulent energy, and the most effective frequency for producing pre-transitional boundary layer fluctuations is about 0.3U/η where η is Kolmogorov’s length scale. In addition, the role of turbulence Reynolds number on stagnation heat transfer and transition is discussed, and new expressions to account for its effect are provided.


Author(s):  
K. Dullenkopf ◽  
R. E. Mayle

The effect of length scale in free-stream turbulence is considered for heat transfer in laminar boundary layers. A model is proposed which accounts for an “effective” intensity of turbulence based on a dominant frequency for a laminar boundary layer. Assuming a standard turbulence spectral distribution, a new turbulence parameter which accounts for both turbulence level and length scale is obtained and used to correlate heat transfer data for laminar stagnation flows. The result indicates that the heat transfer for these flows is linearly dependent on the “effective” free-stream turbulence intensity.


Author(s):  
F. Mumic ◽  
B. Sunden

In the present work, a numerical study has been performed to simulate the effect of free-stream turbulence, length scale and variations in rotational speed of the rotor on heat transfer and fluid flow for a transonic high-pressure turbine stage with tip clearance. The stator and rotor rows interact via a mixing plane, which allows the stage to be computed in a steady manner. The focus is on turbine aerodynamics and heat transfer behavior at the mid-span location, and at the rotor tip and casing region. The results of the fully 3D CFD simulations are compared with experimental results available for the so-called MT1 turbine stage. The predicted heat transfer and static pressure distributions show reasonable agreement with the experimental data. In general, the local Nusselt number increases, at the same turbulence length scale, as the turbulence intensity increases, and the location of the suction side boundary layer transition moves upstream towards the blade leading edge. Comparison of the different length scales at the same turbulence intensity shows that the stagnation heat transfer was significantly increased as the length scale increased. However, the length scale evidenced no significant effects on blade tip or rotor casing heat transfer. Also, the results presented in this paper show that the rotational speed in addition to the turbulence intensity and length scale has an important contribution to the turbine blade aerodynamics and heat transfer.


Sign in / Sign up

Export Citation Format

Share Document