scholarly journals Analysis of high-order velocity moments in a strained channel flow

2021 ◽  
Vol 89 ◽  
pp. 108796
Author(s):  
Svetlana V. Poroseva ◽  
Scott M. Murman
2010 ◽  
Vol 22 (S1) ◽  
pp. 215-218 ◽  
Author(s):  
Jian-ping Luo ◽  
Zhi-ming Lu ◽  
TatsLo Ushijima ◽  
Osami Kitoh ◽  
Xiang Qiu ◽  
...  

2012 ◽  
Vol 24 (2) ◽  
pp. 287-291 ◽  
Author(s):  
Jian-ping Luo ◽  
Xiang Qiu ◽  
Dong-mei Li ◽  
Yu-lu Liu

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Anurag Sharma ◽  
Bimlesh Kumar

In this work, we have performed the flume study to analyze the high-order velocity moments of turbulent boundary layer with and without downward seepage. Sediment transport experiments were done in the laboratory for no seepage (NS), 10% seepage (10%S), and 15% seepage (15%S) cases. Measures of streamwise velocity variance were found increasing with seepage, which lead to increase in sediment transport with seepage. Results show that the variance of streamwise velocity fluctuation follows logarithmic law with distance away from the bed, within inner layer. This observation is also valid for even-order moments obtained in this work. The results show that the (2p-order moments)1/p also follows logarithmic law. The slopes Ap in the turbulent boundary layer seem fairly unaffected to NS and seepage flow but follows nonuniversal behavior for NS and seepage runs. The computed slope based on the Gaussian statistics does not agree well with the slope obtained from the experimental data and computed slope are reliable with sub-Gaussian performance for NS flow and super-Gaussian behavior for seepage flow.


2009 ◽  
Vol 59 (12) ◽  
pp. 1389-1409 ◽  
Author(s):  
Georges Kesserwani ◽  
Robert Mosé ◽  
José Vazquez ◽  
Abdellah Ghenaim

Author(s):  
Nojan Bagheri-Sadeghi ◽  
Brian T. Helenbrook ◽  
Kenneth D. Visser

Abstract One-dimensional fully developed channel flow was solved using a modified k–ω turbulence model that was recently proposed for use with high-order finite element schemes. In order to study this new turbulence model’s behavior, determine its dependence on boundary conditions and model constants, and find efficient methods for obtaining solutions, the model was first examined using a linear finite element discretization in 1D. The results showed that an accurate estimate of the parameter εk which is used to define k in terms of the working variable k~ is essential to get an accurate solution. Also, the turbulence model depended sensitively on an accurate estimate of the distance of the first grid point from the wall, which can be difficult to estimate in unstructured grids. This is used for the boundary condition of specific dissipation rate on the wall. This model was then implemented in a high-order finite element code that uses an unstructured mesh of triangles to verify that the 1D results were predictive of the behavior of the full 2D discretization. High-order 2D results were obtained on triangular meshes with element aspect ratios up to 250000.


Sign in / Sign up

Export Citation Format

Share Document