spanwise rotation
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 931 ◽  
Author(s):  
Yabiao Zhu ◽  
Jiaxing Song ◽  
Fenghui Lin ◽  
Nansheng Liu ◽  
Xiyun Lu ◽  
...  

Direct numerical simulation of spanwise-rotation-driven flow transitions in viscoelastic plane Couette flow from a drag-reduced inertial to a drag-enhanced elasto-inertial turbulent flow state followed by full relaminarization is reported for the first time. Specifically, this novel flow transition begins with a drag-reduced inertial turbulent flow state at a low rotation number $0\leqslant Ro \leqslant 0.1$ , and then transitions to a rotation/polymer-additive-driven drag-enhanced inertial turbulent regime, $0.1\leqslant Ro \leqslant 0.3$ . In turn, the flow transitions to a drag-enhanced elasto-inertial turbulent state, $0.3\leqslant Ro \leqslant 0.9$ , and eventually relaminarizes at $Ro=1$ . In addition, two novel rotation-dependent drag enhancement mechanisms are proposed and substantiated. (1) The formation of large-scale roll cells results in enhanced convective momentum transport along with significant polymer elongation and stress generated in the extensionally dominated flow between adjacent roll cells at $Ro\leqslant 0.2$ . (2) Coriolis-force-generated turbulent vortices cause strong incoherent transport and homogenization of significant polymer stress in the bulk via their vortical circulations at $Ro=0.5 - 0.9$ .


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3624 ◽  
Author(s):  
Zhenqing Liu ◽  
Yiran Hu ◽  
Yichen Fan ◽  
Wei Wang ◽  
Qingsong Zhou

The flow fields over a simplified 3D hill covered by vegetation have been examined by many researchers. However, there is scarce research giving the three-dimensional characteristics of the flow fields over a rough 3D hill. In this study, large eddy simulations were performed to examine the coherent turbulence structures of the flow fields over a vegetation-covered 3D hill. The numerical simulations were validated by the comparison with the wind-tunnel experiments. Besides, the flow fields were systematically investigated, including the examinations of the mean velocities and root means square of the fluctuating velocities. The distributions of the parameters are shown in a three-dimensional way, i.e., plotting the parameters on a series of spanwise slices. Some noteworthy three-dimensional features were found, and the mechanisms were further revealed by assessing the turbulence kinetic energy budget and the spectrum energy. Subsequently, the instantaneous flow fields were illustrated, from which the coherent turbulence structures were clearly identified. Ejection-sweep motion was intensified just behind the hill crest, leading to a spanwise rotation. A group of vertical rotations were generated by the shedding of the vortex from the lateral sides of the hill.


2018 ◽  
Vol 861 ◽  
pp. 200-222 ◽  
Author(s):  
Satoshi Nakashima ◽  
Mitul Luhar ◽  
Koji Fukagata

We study the effect of spanwise rotation in turbulent channel flow at both low and high Reynolds numbers by employing the resolvent formulation proposed by McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382). Under this formulation, the nonlinear terms in the Navier–Stokes equations are regarded as a forcing that acts upon the remaining linear dynamics to generate the turbulent velocity field in response. A gain-based decomposition of the forcing–response transfer function across spectral space yields models for highly amplified flow structures, or modes. Unlike linear stability analysis, this enables targeted analyses of the effects of rotation on high-gain modes that serve as useful low-order models for dynamically important coherent structures in wall-bounded turbulent flows. The present study examines a wide range of rotation rates. A posteriori comparisons at low Reynolds number ($\mathit{Re}_{\unicode[STIX]{x1D70F}}=180$) demonstrate that the resolvent formulation is able to quantitatively predict the effect of varying spanwise rotation rates on specific classes of flow structure (e.g. the near-wall cycle) as well as energy amplification across spectral space. For fixed inner-normalized rotation number, the effects of rotation at varying friction Reynolds numbers appear to be similar across spectral space, when scaled in outer units. We also consider the effects of rotation on modes with varying speed (i.e. modes that are localized in regions of varying mean shear), and provide suggestions for modelling the nonlinear forcing term.


Author(s):  
YuHan Huang ◽  
ZhenHua Xia ◽  
MinPing Wan ◽  
YiPeng Shi ◽  
ShiYi Chen

2018 ◽  
Vol 74 (1) ◽  
pp. 895-916 ◽  
Author(s):  
Amine Abdelmoula ◽  
Bassam A. Younis ◽  
Sebastian Spring ◽  
Bernhard Weigand

2017 ◽  
Vol 837 ◽  
pp. 477-490 ◽  
Author(s):  
Zhenhua Xia ◽  
Yipeng Shi ◽  
Qingdong Cai ◽  
Minping Wan ◽  
Shiyi Chen

Turbulence is ubiquitous in nature and engineering applications. Although Kolmogorov’s (C. R. Acad. Sci. URSS, vol. 30, 1941a, pp. 301–305;Dokl. Akad. Nauk URSS, vol. 30, 1941b, pp. 538–540) theory suggested a unique turbulent state for high Reynolds numbers, multiple states were reported for several flow problems, such as Rayleigh–Bénard convection and Taylor–Couette flows. In this paper, we report that multiple states also exist for turbulent plane Couette flow with spanwise rotation through direct numerical simulations at rotation number$Ro=0.2$and Reynolds number$Re_{w}=1300$based on the angular velocity in the spanwise direction and half of the wall velocity difference. With two different initial flow fields, our results show that the flow statistics, including the mean streamwise velocity and Reynolds stresses, show different profiles. These different flow statistics are closely related to the flow structures in the domain, where one state corresponds to two pairs of roll cells, and the other shows three pairs. The present result enriches the studies on multiple states in turbulence.


Sign in / Sign up

Export Citation Format

Share Document