Volume 2: Computational Fluid Dynamics
Latest Publications


TOTAL DOCUMENTS

81
(FIVE YEARS 81)

H-INDEX

1
(FIVE YEARS 1)

Published By American Society Of Mechanical Engineers

9780791859032

Author(s):  
Antara Badhan ◽  
V. M. Krushnarao Kotteda ◽  
Vinod Kumar

Abstract Dry powder inhalers (DPIs), used as a means for pulmonary drug delivery, typically contain a combination of active pharmaceutical ingredient (API) and significantly larger carrier particles. The micro-sized drug particles — which have a strong propensity to aggregate and poor aerosolization performance — mixed with significantly large carrier particles that are unable to penetrate the mouth-throat region to deagglomerate and entrain the smaller API particles in the inhaled airflow. The performance of a DPI, therefore, depends on entrainment the carrier-API combination particles and the time and thoroughness of the deagglomeration of the individual API particles from the carrier particles. Since DPI particle transport is significantly affected by particle-particle interactions, very different particles sizes and shapes, various forces including electrostatic and van der Waals forces, they present significant challenges to Computational Fluid Dynamics (CFD) modelers to model regional lung deposition from a DPI. In the current work, we present a novel high fidelity CFD discrete element modeling (CFD-DEM) and sensitivity analysis framework for predicting the transport of DPI carrier and API particles. The work integrates exascale capable CFD-DEM and sensitivity analysis capabilities by leveraging the Department of Energy (DOE) laboratories libraries: Multiphase Flow Interface Flow Exchange (MFiX) for CFD-DEM, and Trilinos for leading-edge portable/scalable linear algebra. We carried out a sensitivity analysis of various formulation properties and their effects on particle size distribution with Dakota, an open source software designed to exploit High-Performance Computing (HPC) capabilities of a massively parallel supercomputer. We developed wrappers to exchange information among these state-of-the-art tools for DPI.


Author(s):  
Juan C. Arango Escobar ◽  
David Calderon Villegas ◽  
Aldo Benavides Moran ◽  
Alejandro Molina Ochoa

Abstract This paper presents CFD simulations of the flow through a real bottom outlet equipped with high-head slide gates. The operating head of the gates and the maximum flow rate are 70 m and 650 m3/s, respectively. The numerical simulations were performed in ANSYS-FLUENT version 19.2. VOF method was used to model the free surface flow downstream the slide gates. Hydrodynamic forces were calculated at nine gate openings for a standard 45° lip gate; the downpull coefficients obtained from the simulations were compared with estimates from Naudascher’s analytical method. According to the CFD results, the downpull force acting on the 45° lip gate is 5%–10% lower than the one estimated analytically for the analyzed gate positions. Additionally, the flow through an inverted 30° lip gate was simulated to estimate the downpull coefficient at various gate openings. These coefficients cannot be determined analytically. The methodology here described can easily be applied to different gate geometries for which design coefficients are not available.


Author(s):  
Tausif Jamal ◽  
D. Keith Walters

Abstract Unsteady turbulent wall bounded flows can produce complex flow physics including temporally varying mean pressure gradients, intermittent regions of high turbulence intensity, and interaction of different scales of motion. As a representative example, pulsating channel flow presents significant challenges for newly developed and existing turbulence models in computational fluid dynamics (CFD) simulations. The present study investigates the performance of the Dynamic Hybrid RANS-LES (DHRL) model with a newly proposed dynamic time filtering (DTF) technique, compared against an industry standard Reynolds-Averaged Navier-Stokes (RANS) model, Monotonically Integrated Large Eddy Simulation (MILES), and two conventional Hybrid RANS-LES (HRL) models. Model performance is evaluated based on comparison to previously documented Large Eddy Simulation (LES) results. Simulations are performed for a fully developed flow in a channel with time-periodic driving pressure gradient. Results highlight the relative merits of each model type and indicate that the use of a dynamic time filtering technique improves the accuracy of the DHRL model when compared to a static time filtering technique. A comprehensive evaluation of the results suggests that the DHRL-DTF method provides the most consistently accurate reproduction of the time-dependent mean flow characteristics for all models investigated.


Author(s):  
Konstantin I. Matveev

Abstract Practical implementation of ship drag reduction techniques can lead to substantial fuel savings and lessening environmental impacts of maritime transportation. One of such technologies is based on injecting air underneath ship hulls, which results in the formation of thin air cavities that decrease the wetted hull surface and hence its frictional drag. In realistic sea wave conditions, however, these cavities become unsteady and may easily disintegrate upon interaction with high-amplitude abnormal waves. In this study, the air-cavity dynamics in such situations is simulated with a potential flow model and empirical correlations. A method for controlling the air cavity by varying the air supply rate is numerically investigated. It is shown that degradation of the air-cavity power savings in the event of a rogue wave passing can be partly mitigated by briefly boosting the air supply right after the abnormal wave occurrence. For one considered example, it is found that 20% of power savings is lost in a condition with abnormal waves and constant air supply. In case of temporary augmentation of air injection, the overall decrease of power savings is reduced to 10%.


Author(s):  
Yan Zhang ◽  
Xiaobing Lu ◽  
Xuhui Zhang ◽  
Peng Li

Abstract Hydraulic fracturing is an efficient way to improve the conductivity of the tight oil or gas reservoirs. Proppant transportation in hydraulic fractures need to be investigated because the proppant distribution directly affects the oil or gas production. In this paper, the dense discrete particle model (DDPM) combined with the kinetic theory of granular flow (KTGF) are used to investigate the proppant transportation in a single fracture. In this model, the effects of proppant volume fraction, proppant-water interaction, proppant-proppant collision, and proppant size distribution are considered. The proppant-proppant collision is derived from the proppant stress tensor. This model is applicable from dilute to dense particulate flows. The simulated results are similar to the experimental data from other researchers. In further study, the two-phase flow in the cross fractures will be considered for engineering application.


Author(s):  
M. Usman ◽  
M. Sajid

Abstract Sloshing characterized by inertial waves has an adverse effect on the directional dynamics and safety of partially filled tank vehicles, limiting their stability and controllability during steering, accelerating or braking maneuvers. A mathematical description of the transient fluid slosh in a horizontal cylindrical tank should consider the simultaneous lateral, vertical and roll excitations assuming potential flows and a linearized free-surface boundary condition. While the determination of vehicle stability would require coupling this model to a dynamic roll plane model of a tank vehicle resulting in a computationally expensive analysis. Considering the need for a simpler method to predict roll stability for partially filled tank vehicles, we explore the Zero Moment Point of a liquid domain as a novel solution to this challenge. Numerical investigations are carried out in a three-dimensional partially filled tanks while tracking the movement of the liquid-air interface by employing the volume of fluid method in OpenFOAM. The center of Mass and Zero Moment Point were calculated from the computational results using analytical expressions. The movement of free surface is found to be in good agreement with available literature. The center of mass of the liquid domain was traced as a practical means to quantify the slosh in the tanker. The analyses are performed for different fluid fill heights at varying speeds. The results suggest that the roll stability of tank vehicles can be efficiently analyzed using the zero moment point with significantly lower computational effort.


Author(s):  
Way Lee Cheng ◽  
Reza Sadr ◽  
Arum Han

Abstract Splitting a single droplet into two unequal portions using a microfluidic T-junction has been an important functional feature of many modern lab-on-a-chip devices. A recent study introduced a general criterion for asymmetric droplet break-up in the range of intermediate Capillary numbers. The current work attempts to analyze, in more details, the different underlying mechanisms governing the asymmetric break-up process. In particular, this work focuses on the relationship between the break-up mechanism versus the splitting ratio of the daughter droplets. CFD simulation is used to closely monitor the effect of different fluid properties on the evolution of droplet break-up process. The splitting ratio under different flow conditions is characterized. Four mechanisms for primary droplet break-up are defined as follows: break-up with permanent obstruction, unstable break-up, breakup with tunnels and non-breakup. In particular, the main focus of this study is on the unstable break-up mechanisms where is very likely results to a much-deviated splitting ratio. Typically, yet unexpectedly, the resulting splitting ratio is often larger than the pressure gradient ratio in the T-junction. However, the two ratios are approximately equals to each other under a limited set of flow conditions. It has been observed that the splitting ratio could be more than double the pressure gradient ratio of the T-junction. The break-up is observed to be in the permanent obstruction mode if the splitting ratio is about the same magnitude as the pressure gradient ratio. The effects of the T-junction geometry on the break-up will also be examined.


Author(s):  
Luis F. Rodriguez ◽  
Vinod Kumar ◽  
Jose Espiritu ◽  
Arturo Bronson ◽  
Krushnarao Kotteda ◽  
...  

Abstract An analytical estimation of the wave diffraction due to turbulence is made and then it is compared with an estimate based on the Branch and Bound technique as a platform of a machine learning model. At the final step, the results are compared to verify the capacity of the machine learning model. The reason for this analysis is based on the fact that communication via laser beam in the open atmospheric environment experiences the effects of the turbulence generating a disturbance of wave phases that affects the fidelity of such communication.


Author(s):  
Tomohiro Hirano ◽  
Mitsuo Yoshimura ◽  
Koji Shimoyama ◽  
Atsuki Komiya

Abstract Toward a practical application of the additive manufacturing (AM), this study proposes a shape optimization approach for the cross-sectional shape of the inner pipe of a counter-flow double pipe heat exchanger. The cross-sectional shape of the inner pipe is expressed by an algebraic expression with a small number of parameters, and their heat transfer performance is evaluated by a commercial Computational Fluid Dynamics (CFD) solver. The optimization is conducted by the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) assisted by the Kriging surrogate model, and the NSGA-II finds the optimal cross-sectional shape with many protrusions around the perimeter of the inner channel to improve the heat transfer performance. In this study, heat transfer performance is evaluated from the temperature drop at the outlet of the high-temperature fluid. Through the comparison of two cross-sectional shapes with the same heat transfer surface area — average temperature at the outlet of the optimal high-temperature channel is 324.58 K while average temperature at the outlet of a circular high-temperature channel with the same area as the optimal channel is 331.93 K, it is revealed that the number of protrusions plays important roles which contribute not only to increase heat transfer area but also to improve heat transfer performance.


Author(s):  
Torsten Berning

Abstract A numerical analysis of an air-cooled proton exchange membrane fuel cell (PEMFC) has been conducted. The model utilizes the Eulerian multi-phase approach to predict the occurrence and transport of liquid water inside the cell. It is assumed that all the waste heat must be carried out of the fuel cell with the excess air which leads to a strong temperature increase of the air stream. The results suggest that the performance of these fuel cells is limited by membrane overheating which is ultimately caused by the limited heat transfer to the laminar air stream. A proposed remedy is the placement of a turbulence grid before such a fuel cell stack to enhance the heat transfer and increase the fuel cell performance.


Sign in / Sign up

Export Citation Format

Share Document