Large eddy simulation of passive scalar transport in a stirred tank for different diffusivities

Author(s):  
Hyun Sik Yoon ◽  
S. Balachandar ◽  
Man Yeong Ha
2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Yacine Salhi ◽  
El-Khider Si-Ahmed ◽  
Gérard Degrez ◽  
Jack Legrand

The highly turbulent flow occurring inside (electro)chemical reactors requires accurate simulation of scalar mixing if computational fluid dynamics (CFD) methods are to be used with confidence in design. This has motivated the present paper, which describes the implementation of a passive scalar transport equation into a hybrid spectral/finite-element code. Direct numerical simulations (DNS) and large eddy simulation (LES) were performed to study the effects of gravitational and centrifugal potentials on the stability of incom-pressible Taylor-Couette flow. The flow is confined between two concentric cylinders with an inner rotating cylinder while the outer one is at rest. The Navier-Stokes equations with the uncoupled convection–diffusion–reaction (CDR) equation are solved using a code named spectral/finite element large eddy simulations (SFELES) which is based on spectral development in one direction combined with a finite element discretization in the remaining directions. The performance of the LES code is validated with published DNS data for channel flow. Velocity and scalar statistics showed good agreement between the current LES predictions and DNS data. Special attention was given to the flow field, in the vicinity of Reynolds number of 68.2 with radii ratio of 0.5. The effect of Sc on the concentration peak is pointed out while the magnitude of heat transfer shows a dependence of the Prandtl number with an exponent of 0.375.


2020 ◽  
Vol 222 ◽  
pp. 115658
Author(s):  
J. Ramírez-Cruz ◽  
M. Salinas-Vázquez ◽  
G. Ascanio ◽  
W. Vicente-Rodríguez ◽  
C. Lagarza-Córtes

Author(s):  
C. Le Ribault ◽  
S. Simoe¨ns

A large-eddy simulation (LES) using the atmospheric code ARPS is performed to study the passive scalar dispersion downstream of an obstacle. An immersed boundary method has been introduced to take into account the obstacle. To simulate the scalar dispersion, instead of resolving the passive scalar transport equation, fluid particles containing scalar are tracked in a Lagrangian way. The results of the LES are compared with the experiments of Vinc¸ont et al. [1]. In those experiments, simultaneous measurements of the velocity and scalar concentration fields have been made in the plume emitting from a two-dimensional line source flushed with the wall. The source is one obstacle height downstream of a two-dimensional square obstacle located on the wall of a turbulent boundary layer. Our simulations predict the qualitative and quantitative features of the experimental results.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 1509-1516 ◽  
Author(s):  
C. Le Ribault ◽  
S. Sarkar ◽  
S. A. Stanley

Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 597 ◽  
Author(s):  
Lu Yang ◽  
Zhenna Zhu ◽  
Xin Qi ◽  
Xiaokang Yan ◽  
Haijun Zhang

Pulp preconditioning using a stirred tank as a pretreatment process is vital to the flotation system, which can be used to improve the flotation efficiency of mineral particles. The kinetic energy that is dissipated in the stirred tank could strengthen the interaction process between mineral particles and flotation reagents to improve the flotation efficiency in the presence of the preconditioning. In this paper, the effect of the conditioning speed on the coal fly ash flotation was investigated using numerical simulations and conditioning-flotation tests. The large eddy simulation coupled with the Smagorinsky-Lilly subgrid model was employed to simulate the turbulence flow field in the stirred tank, which was equipped with a six blade Rushton turbine. The impeller rotation was modelled using the sliding mesh. The simulation results showed that the large eddy simulation (LES) well matched the previous experimental data. The turbulence characteristics, such as the mean velocity, turbulent kinetic energy, power consumption and instantaneous structures of trailing vortices were analysed in detail. The turbulent length scale (η) decreased as the rotation speed increased, and the minimum value of η was almost unchanged when the rotation speed was more than 1200 rpm. The conditioning-flotation tests of coal fly ash were conducted using different conditioning speeds. The results showed that the removal of unburned carbon was greatly improved due to the strengthened turbulence in the stirred tank, and the optimal results were obtained with an LOI of 3.32%, a yield of 78.69% and an RUC of 80.89% when the conditioning speed was 1200 rpm.


2019 ◽  
Vol 885 ◽  
Author(s):  
A. E. Tejada-Martínez ◽  
A. Hafsi ◽  
C. Akan ◽  
M. Juha ◽  
F. Veron


Sign in / Sign up

Export Citation Format

Share Document