Experimental and numerical study on the transient heat-transfer characteristics of circular air-jet impingement on a flat plate

Author(s):  
Qiang Guo ◽  
Zhi Wen ◽  
Ruifeng Dou
2011 ◽  
Vol 148-149 ◽  
pp. 680-683
Author(s):  
Run Peng Sun ◽  
Wei Bing Zhu ◽  
Hong Chen ◽  
Chang Jiang Chen

Three-dimensional numerical study is conducted to investigate the heat transfer characteristics for the flow impingement cooling in the narrow passage based on cooling technology of turbine blade.The effects of the jet Reynolds number, impingement distance and initial cross-flow on heat transfer characteristic are investigated.Results show that when other parameters remain unchanged local heat transfer coefficient increases with increase of jet Reynolds number;overall heat transfer effect is reduced by initial cross-flow;there is an optimal distance to the best effect of heat transfer.


Author(s):  
Feng Zhang ◽  
Xinjun Wang ◽  
Jun Li ◽  
Rui Tan ◽  
Dongliang Wei

The present numerical study is conducted to investigate the flow and heat transfer characteristics for impingement cooling on concave or convex dimpled plate with four different dimple arrangements. The investigation of the impingement cooling on the flat plate is also conducted to serve as a contrast and these results are compared with experimental measurements to verify the computational method. Dimples studied here are placed, relative to impingement holes, in either spanwise shifted, in staggered, in in-line, or in streamwise shifted arrangements. The flow structure, pressure loss and heat transfer characteristics of the concave and convex dimpled plate of four different dimple arrangements have been obtained and compared with flat plate for the Reynolds number range of 15000 to 35000. The results show that compared with flat plate, the added concave or convex dimples only causes a negligible increase in the pressure loss, and the pressure loss is insensitive to concave or convex dimple arrangement patterns. In addition, compared with flat plate, both spanwise shifted and staggered concave dimple arrangements show better heat transfer performance, while in-line concave dimple arrangement show worse results. Besides that, the heat transfer performance for streamwise shifted concave dimple arrangement is the worst. Furthermore, compared with flat plate, all convex dimple arrangements studied here show better heat transfer performance.


Author(s):  
Abhishek B. Bhagwat ◽  
Arunkumar Sridharan

Jet impingement cooling has been studied extensively as this finds applications in the areas of reactor safety, electronic cooling, etc. Here, the convective heat transfer process between the air jet impingement on a uniformly heated inclined flat plate is studied numerically. In this numerical study, 3D simulations are carried out using commercial CFD code to investigate the effect of angle of inclination of plate, Reynolds number, and distance between the nozzle exit and the plate on the heat transfer characteristics. V2F model has been used to model turbulence for various nozzle–plate distance and Reynolds number. It can be concluded that V2F model predicts the Nusselt number variation on the plate satisfactorily. It is observed that point of maximum heat transfer is at the stagnation point in case of vertical jet impinging on a horizontal plate, while it shifts away from the point of impingement for the case of a vertical jet impinging on an inclined flat surface. The shift is toward the “compression side” or the “uphill side” of the air jet. The results are validated with experimental data from the literature. Detailed analysis of local heat transfer coefficients, velocity contours, temperature contours, and Nusselt number variations on the flat plate is presented.


2018 ◽  
Vol 32 (12) ◽  
pp. 6021-6027 ◽  
Author(s):  
Joo Hyun Moon ◽  
Soyeong Lee ◽  
Jee Min Park ◽  
Jungho Lee ◽  
Daejoong Kim ◽  
...  

2007 ◽  
Vol 2007.3 (0) ◽  
pp. 5-6
Author(s):  
Kenichiro TAKEISHI ◽  
Ryuta ITO ◽  
Keizo TSUKAGOSHI ◽  
Masaaki MATSUURA ◽  
Tsuyoshi KITAMURA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document