Long-term Thermo-hydraulic Response of the Shallow Subsurface soil in the Vicinity of a Buried Horizontal Heat Source

Author(s):  
Mohammadreza Mir Tamizdoust ◽  
Omid Ghasemi-Fare
Chemosphere ◽  
2012 ◽  
Vol 86 (10) ◽  
pp. 1028-1034 ◽  
Author(s):  
K. Cheyns ◽  
F. Martin-Laurent ◽  
D. Bru ◽  
J. Aamand ◽  
L. Vanhaecke ◽  
...  

2017 ◽  
Vol 81 (2) ◽  
pp. 310-321 ◽  
Author(s):  
Sarah M. Collier ◽  
Matthew D. Ruark ◽  
Mack R. Naber ◽  
Todd W. Andraski ◽  
Michael D. Casler

2021 ◽  
Author(s):  
Zeyong Hu ◽  
Xiaoqiang Yan

<p>Based on multi-level AWS data during 2001 to 2015 and eddy covariance data during 2011 to 2014 at Nagqu Station of Plateau Climate and Environment, the turbulent fluxes were calculated by a surface energy balance combination (CM) and eddy covariance ( EC) method. A long-term heat fluxes and surface heat source were obtained with comparison and correction of EC and CM fluxes. The surface energy closure ratio is close to 1 in spring, summer and autumn. But it reaches to 1.34 in winter due to low net radiation observation value on snow surface. The sensible heat flux shows a ascend trend while latent heat flux shows a descend trend during 2002 to 2015. The surface heat source shows a descend trend. The analysis of the surface heat source indicates that it has a significant relationship with net radiation flux, surface temperature, soil moisture and wind speed. Particularly, the surface heat source has a significant response to net radiation flux throughout the year. There are obvious influences of surface temperature and soil moisture on the surface heat source in spring, autumn and winter. And the influence of wind speeds on surface heat source is strong only in spring. The annual variation of sensible heat flux and latent heat flux are obvious. Sensible heat flux reaches the maximum value of the year in April and the minimum value in July. however, latent heat flux shows the maximum value in July and the minimum value in January. </p>


2003 ◽  
Vol 43 (1) ◽  
pp. 71 ◽  
Author(s):  
M. K. Conyers ◽  
C. L. Mullen ◽  
B. J. Scott ◽  
G. J. Poile ◽  
B. D. Braysher

The cost of buying, carting and spreading limestone, relative to the value of broadacre crops, makes investment in liming a questionable proposition for many farmers. The longer the beneficial effects of limestone persist, however, the more the investment in liming becomes economically favourable. We re-established previous lime trials with the aim of measuring the long-term effects of limestone on surface acidity (pH run-down), subsurface acidity (lime movement) and grain yield. The study made use of experiments where there was adequate early data on soil chemical properties and cereal yields. We report data from 6 trials located at 4 sites between Dubbo and Albury in New South Wales. The rate of surface soil (0–10 cm) pH decline after liming was proportional to the pH attained 1 year after liming. That is, the higher the pH achieved, the more rapid the rate of subsequent pH decline. Since yields (product removal) and nitrification (also acid producing) may both vary with pH, the post-liming pH acts as a surrogate for the productivity and acid-generating rate of the soil–plant system. The apparent lime loss rate of the surface soils ranged from the equivalent of nearly 500 kg limestone/ha.year at pH approaching 7, to almost zero at pH approaching 4. At commercial application rates of 2–2.5 t/ha, the movement of alkali below the layer of application was restricted. However, significant calcium (Ca) movement sometimes occurred to below 20 cm depth. At rates of limestone application exceeding the typical commercial rate of 2.5 t/ha, or at surface pH greater than about 5.5, alkali and Ca movement into acidic subsurface soil was clearly observed. It is therefore technically feasible to ameliorate subsurface soil acidity by applying heavy rates of limestone to the soil surface. However, the cost and risks of this option should be weighed against the use of acid-tolerant cultivars in combination with more moderate limestone rates worked into the surface soil.There was a positive residual benefit of limestone on cereal grain yield (either barley, wheat, triticale, or oats) at all sites in both the 1992 and 1993 seasons. While acid-tolerant cultivars were less lime responsive than acid-sensitive ones, the best yields were generally obtained using a combination of liming and acid-tolerant cultivars.The long-term residual benefits of limestone were shown to extend for beyond 8–12 years and indicate that liming should be profitable in the long term.


2020 ◽  
Vol 154 ◽  
pp. 04003
Author(s):  
Elżbieta Hałaj

Heat pumps become more and more popular heat source. They can be an alternative choice for obsolete coal fired boilers which are emissive and not ecological. During heat pump installation designing process, especially for heat pumps with higher heating capacity (for example those suppling larger buildings), a simulation of heat balance of ground heat source must be provided. A 3D heat transport model and groundwater flow in the geothermal heat source for heat pump (GSHP) installation was developed in FEFLOW according to Finite Element Modelling Method. The model consists of 25 borehole heat exchangers, arranged with spacing recommended by heat pump branch guidelines. The model consists of both a homogeneous, non-layered domain and a layered domain, which reflected differences in thermal properties of the ground and hydrogeological factors. The initial temperature distribution in the ground was simulating according to conditions typical for Europe in steady state heat flow. Optimal mesh refinement for nodes around borehole heat exchangers were calculated according to Nillert method. The aim of this work is to present influence of geological, hydrogeological factors and borehole arrangement in the energy balance and long term sustainability of the ground source. The thermal changes in the subsurface have been determined for a long term operation (30 years of operation period). Some thermal energy storage applications have also been considered.


Soil Research ◽  
1996 ◽  
Vol 34 (6) ◽  
pp. 985 ◽  
Author(s):  
V Manoharan ◽  
P Loganathan ◽  
RL Parfitt ◽  
RW Tillman

This study describes some of the effects of 8 years of annual application of 6 types of phosphatic fertilisers on the chemical composition and aluminium (Al) speciation in soil solution extracted from a soil under pasture. Soil samples at 2 depths, 0-30 and 30-75 mm, were collected at the end of 8 years. Soil solutions were extracted by centrifuging at 12 000 RCF and analysed for Al, Na, K, Ca, Mg, F, NO3, Cl, and SO4, as well as pH and ionic strength. Soil and soil solution pH were significantly increased at both depths by application of North Carolina phosphate rock (NCPR) compared with the control. In contrast, diammonium phosphate (DAP) significantly decreased the soil and solution pH. Single superphosphate (SSP) did not have any significant effect on soil or solution pH compared with the untreated control. The surface soil (0-30 mm) solution pH was on average 0.6 of a unit higher than the subsurface soil (30-75 mm) solution pH. Total monomeric Al concentration [Al], measured by the pyrocatecol violet (PCV; 4 min) method, ranged from 1.5 to 4.8 �M in the surface soil and 2.5 to 12.2 �M in the subsurface soil. The DAP and higher rates of SSP application resulted in a large increase in total and inorganic monomeric [Al] in the soil solution extracted from the subsurface soil. Total soluble [F] ranged from 2.7 to 23.5 �M and 3.2 to 25.6 �M in the surface and subsurface soils, respectively, and was significantly increased by the application of NCPR and by higher rates of SSP. The predominant forms of inorganic monomeric Al present in the soil solution were estimated to be the non-phytotoxic Al-F complexes, AlF2+, and AlF2+. There was a marked decrease in toxic Al species (Al3+, Al(OH)2+, Al(OH)2+) in soil solution following NCPR and SSP application. This was due primarily to complexation of Al with F derived from these fertilisers forming non-toxic AI-F complexes. The results suggest that the long-term application of reactive phosphate rock such as NCPR may contribute to amelioration of soil acidity and Al toxicity under legume-based pastures. In contrast ammonium-containing phosphate fertilisers such as DAP probably decrease soil pH and increase the formation of toxic Al species in the soil solution.


2014 ◽  
Vol 90 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Anu Mikkonen ◽  
Minna Santalahti ◽  
Kaisa Lappi ◽  
Anni-Mari Pulkkinen ◽  
Leone Montonen ◽  
...  

Author(s):  
Jianxun Shen ◽  
Aubrey Zerkle ◽  
Mark Claire ◽  
Eva Stueeken

Nitrate is rich in Mars sediments owing to long-term atmospheric photolysis, oxidation, and deposition coupled with a lack of leaching via rainfall. The Atacama Desert in Chile, which is similarly dry and rich in nitrate deposits, is used as a Mars analog in this study to explore the potential effects of high nitrate levels on microbial growth. Seven study sites sampled across an aridity gradient in the Atacama Desert were categorized into 3 clusters – hyperarid, intermediate, and arid sites, as defined by major elements in the regolith, associated biomass, and precipitation. Intriguingly, the distribution of nitrate concentrations in the shallow subsurface suggests that the buildup of nitrate is not solely controlled by precipitation. Correlations of nitrate with SiO2/Al2O3 and grain sizes suggest that sedimentation rates are also important in controlling nitrate distribution. At arid sites receiving more than 10 mm/yr precipitation, rainfall shows a stronger impact on biomass than nitrate does. However, high nitrate to organic carbon ratios are generally beneficial to N assimilation as evidenced both by soil geochemistry and enriched culturing experiments. This study suggests that even in the absence of precipitation on contemporary Mars, the nitrate levels are sufficiently high to benefit potentially extant Martian microorganisms.


Sign in / Sign up

Export Citation Format

Share Document