Entropy generation in turbulent syngas counter-flow diffusion flames

2017 ◽  
Vol 42 (49) ◽  
pp. 29532-29544 ◽  
Author(s):  
Khadidja Safer ◽  
Ahmed Ouadha ◽  
Fouzi Tabet
2021 ◽  
Vol 46 ◽  
pp. 101263
Author(s):  
Shahin Akbari ◽  
Moein Farmahini Farahani ◽  
Sadegh Sadeghi ◽  
Masoud Hajivand ◽  
Fei Xu ◽  
...  

2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 769-776
Author(s):  
Fei Ren ◽  
Longkai Xiang ◽  
Huaqiang Chu ◽  
Weiwei Han

The reduction of nitrogen oxides in the high temperature flame is the key factor affecting the oxygen-enriched combustion performance. A numerical study using an OPPDIF code with detailed chemistry mechanism GRI 3.0 was carried out to focus on the effect of strain rate (25-130 s?1) and CO2 addition (0-0.59) on the oxidizer side on NO emission in CH4 / N2 / O2 counter-flow diffusion flame. The mole fraction profiles of flame structures, NO, NO2 and some selected radicals (H, O, OH) and the sensitivity of the dominant reactions contributing to NO formation in the counter-flow diffusion flames of CH4\/ N2 /O2 and CH4 / N2 / O2 / CO2 were obtained. The results indicated that the flame temperature and the amount of NO were reduced while the sensitivity of reactions to the prompt NO formation was gradually increased with the increasing strain rate. Furthermore, it is shown that with the increasing CO2 concentration in oxidizer, CO2 was directly involved in the reaction of NO consumption. The flame temperature and NO production were decreased dramatically and the mechanism of NO production was transformed from the thermal to prompt route.


2019 ◽  
Vol 33 (9) ◽  
pp. 9184-9195 ◽  
Author(s):  
Farzad Bazdidi-Tehrani ◽  
Mohammad Sadegh Abedinejad ◽  
Milad Mohammadi

2010 ◽  
Vol 35 (8) ◽  
pp. 3891-3902 ◽  
Author(s):  
Sheng Chen ◽  
Jing Li ◽  
Haifeng Han ◽  
Zhaohui Liu ◽  
Chuguang Zheng

2015 ◽  
Vol 40 (33) ◽  
pp. 10662-10672 ◽  
Author(s):  
Aman Satija ◽  
Xianan Huang ◽  
Pratikash P. Panda ◽  
Robert P. Lucht

It is shown that the establishment of a large flat diffusion flame in the counter-flow régime of opposed jets of two gaseous reactants could very considerably extend the range of applicability of flame-kinetics studies by structure analysis. Suitable flames are stabilized and their characteristics and behaviour described. The flow patterns, spectrum , refractive index fields, temperature distributions and gas composition at a few selected points are studied for ethylene flames by methods including the use of thermocouples, sodium line reversal, illuminated particle tracks, interferometry and gas chromatography. The aerodynamic and thermal structures are analyzed to yield the distribution of the rate of heat release per unit volume. The following are among the conclusions: two stagnation points and two planes which particles cannot cross occur when the centres of the reaction and aerodynamic systems are made to coincide—this can be prevented by displacing the plane of stoichiometry from that of aerodynamic symmetry; the radial component of flow velocity is proportional to radial distance in the central parts. Isotherms are parallel to each other and to the flame, away from the edges, but maximum temperatures occur at the periphery, at least for some flames. The heat release profile shows regions where small amounts of heat are absorbed; C 2 H 6 and H 2 appear on the oxidant side of the flame. The most significant observation is that the zone of heat release is about ten times wider than would be expected of the equivalent pre-mixed flame and this makes the method applicable to the study of faster flame reactions.


Sign in / Sign up

Export Citation Format

Share Document