rate of heat release
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Roberto Felicetti

PurposeThis study aims to develop an assessment strategy for fire damaged infrastructures based on the implementation of quick diagnostic techniques and consistent interpretation procedures, so to determine the residual safety margin and any need for repair works.Design/methodology/approachIn this perspective, several tailored non-destructive test (NDT) methods have been developed in the past two decades, providing immediate results, with no need for time-consuming laboratory analyses. Moreover, matching their indications with the calculated effects of a tentative fire scenario allows harmonizing distinct pieces of evidence in the coherent physical framework of fire dynamics and heat transfer.FindingsThis approach was followed in the investigations on a concrete overpass in Verona (Italy) after a coach violently impacted one supporting pillar and caught fire in 2017. Technical specifications of the vehicle made it possible to bound the acceptable ranges for fire load and maximum rate of heat release, while surveillance video footage indicated the duration of the burning stage. Some established NDT methods (evaluation of discolouration, de-hydroxylation and rebar hardness) were implemented, together with advanced ultrasonic tests based on pulse refraction and pulse-echo tomography.Originality/valueThe results clearly showed the extension of the most damaged area at the intrados of the box girders and validated the maximum heating depth, as predicted by numerical analysis of the heat transient ensuing from the localized fire model.


Author(s):  
S.M. Khusnutdinova ◽  
◽  
F.Sh. Khafizov ◽  
I.F. Khafizov ◽  
◽  
...  

The specific mass burn-up rate of combustible substances (materials) in case of a fire, determines the heat release intensity, the temperature of burning, the intensity of fire development and other parameters. Like the rate of flame propagation, the mass burn-up rate depends on the physical and chemical properties of substances, their aggregate state, as well as other factors. The mass burn-up rate is used in modeling the process of fire development, assessment of the rate of heat release and the intensity of the supply of extinguishing agents to fire extinguishing installations. Currently, the values of the specific mass burn-up rate are given in various reference materials for a limited number of petroleum products. For single-component substances, the desired value can also be determined by calculation. The existing calculation formulas in theory are applicable for both simple and complex substances, and, in this case, there is a need to calculate the values of the specific heat of combustion and evaporation, the specific heat capacity of the substance. However, the process of complex hydrocarbon fuels burn-up differs significantly- it is due to the gradual burning out of individual fractions in their composition. Therefore, for complex substances the calculation should be made considering the changes in density and temperature during the process of burning. The methods for determining the specific mass rate of burnout of multicomponent petroleum products are considered, the universal nomogram and calculation formula are proposed that will allow determining the specific mass rate of burn-up, knowing the density of the petroleum product under normal conditions and its boiling point.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5318
Author(s):  
Imantas Lipskis ◽  
Saugirdas Pukalskas ◽  
Paweł Droździel ◽  
Dalibor Barta ◽  
Vidas Žuraulis ◽  
...  

The article describes a compression-ignition engine working with a dual-fuel system installed in diesel locomotive TEP70 BS. The model of the locomotive engine has been created applying AVL BOOST and Diesel RK software and engine performance simulations. Combustion characteristics have been identified employing the mixtures of different fuels. The paper compares ecological (CO2, NOx, PM) and energy (in-cylinder pressure, temperature and the rate of heat release (ROHR)) indicators of a diesel and fuel mixtures-driven locomotive. The performed simulation has shown that different fuel proportions increased methane content and decreased diesel content in the fuel mixture, as well as causing higher in-cylinder pressure and ROHR; however, in-cylinder temperature dropped. CO2, NOx and PM emissions decrease in all cases thus raising methane and reducing diesel content in the fuel mixture.


Author(s):  
Kazi Mostafijur Rahman ◽  
Md. Habibur Rahaman

Recently, considerable efforts are made by the engine researches all over the world, focusing primarily on achieving ultra-low emissions of NOx (nitrogen oxides) and soot without any compromise to high thermal efficiency from dual-fuel engine. In this study, combustion performance and engine-out emission of a single cylinder gasoline-diesel dual-fuel engine are numerically investigated by employing a commercial computation fluid dynamics (CFD) software, especially developed for internal combustion engines modeling. Here, gasoline-diesel relative ratio has been varied to find its impacts on performance of a dual-fuel engine. The results show that, in-cylinder pressure, in-cylinder temperature and rate of heat release (ROHR) are increased with gradual increment in diesel relative to gasoline. Injecting higher amount of diesel directly inside the combustion chamber as pilot fuel might have facilitated the auto-ignition process by reducing the ignition delay and accelerated the premixed gasoline-air flame propagation. These led to shorter main combustion duration which is quite desirable to suppress the knock in dual-fuel engines. In addition, NOx emission is found to decrease with relatively higher percentage of diesel. On the other hand, with increasing gasoline ratio relative to diesel, combustion duration is prolonged significantly and led to incomplete combustion, thereby increasing unburned hydrocarbon (UHC) and carbon monoxide (CO).


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110310
Author(s):  
Erdal Tunçer ◽  
Tarkan Sandalci ◽  
Saban Pusat ◽  
Özgün Balcı ◽  
Yasin Karagöz

In this study, cycle-skipping was investigated for a natural gas engine which has single cylinder, unsupercharged with 1.16 L volume and spark ignition. Additionally, inlet manifold air was switched off during cycle-skipping to minimize pumping losses. Thus, cycle-skipping strategy was carried out, and its effects on emission and engine performance were investigated. Indicated mean effective pressure, indicated efficiency, specific emissions (CO, HC, and NOX) and combustion characteristics (in-cylinder pressure and rate of heat release) were investigated in the study. As a result of performed study, it is predicted that a significant improvement can be achieved in indicated thermal efficiency as 22.8% and 13.4% by different cycle-skipping strategies. However, there is not a continuous change in emissions for different cycle-skipping strategies. While CO and NOX emissions increased in 3N1S (three normal, one cycle-skip) condition, HC emissions decreased in accordance with normal condition. For both cycle-skipping strategies, all the emissions have an increase in accordance with normal condition. In 3N1S and 2N1S (two normal, one cycle-skip) cycle skip engine operating conditions, compared to engine operating under normal condition, CO emissions increased by 14.7 and 51.7 times, respectively. In terms of HC emissions, while emission values decreased by 27.8% under 3N1S operating conditions, they increased by 67.2% under 2N1S operating conditions. Finally, in 3N1S and 2N1S cycle skip engine operating conditions, NOx emissions increased by 3.7 and 6.9 times, respectively, compared to normal operating condition. Another significant result of this study is that peak in-cylinder pressure increased as the cycle-skipping rate increased.


2021 ◽  
Vol 11 (8) ◽  
pp. 3522
Author(s):  
Konstantinos-Marios Tsitsilonis ◽  
Gerasimos Theotokatos

In this study a coupled thermodynamics and crankshaft dynamics model of a large two-stroke diesel engine was utilised, to map the relationship of the engine Instantaneous Crankshaft Torque (ICT) with the following frequently occurring malfunctioning conditions: (a) change in Start of Injection (SOI), (b) change in Rate of Heat Release (RHR), (c) change in scavenge air pressure, and (d) blowby. This was performed using frequency analysis on the engine ICT, which was obtained through a series of parametric runs of the coupled engine model, under the various malfunctioning and healthy operating conditions. This process demonstrated that engine ICT can be successfully utilised to identify the distinct effects of malfunctions (c) or (d), as they occur individually in any cylinder. Furthermore by using the same process, malfunctions (a) and (b) can be identified as they occur individually for any cylinder, however there is no distinct effect on the engine ICT among these malfunctions, since their effect on the in-cylinder pressure is similar. As a result, this study demonstrates the usefulness of the engine ICT as a non-intrusive diagnostic measurement, as well as the benefits of malfunctioning conditions mapping, which allows for quick and less resource intensive identification of engine malfunctions.


2021 ◽  
Vol 22 (7) ◽  
pp. 3744
Author(s):  
Sylwia Członka ◽  
Agnė Kairytė ◽  
Karolina Miedzińska ◽  
Anna Strąkowska ◽  
Agnieszka Adamus-Włodarczyk

Rigid polyurethane (PUR) foams reinforced with 1, 2, and 5 wt.% of salvia filler (SO filler) and montmorillonite-modified salvia filler (MMT-modified SO filler) were produced in the following study. The impact of 1, 2, and 5 wt.% of SO filler and MMT-modified SO filler on the morphological, chemical, and mechanical properties of PUR composites were examined. In both cases, the addition of 1 and 2 wt.% of SO fillers resulted in the synthesis of PUR composites with improved physicomechanical properties, while the addition of 5 wt.% of SO fillers resulted in the formation of PUR composites with a less uniform structure and, therefore, some deterioration in their physicomechanical performances. Moreover, the results showed that the modification of SO filler with MMT improved the interphase compatibility between filler surface and PUR matrix. Therefore, such reinforced PUR composites were characterized by a well-developed closed-cell structure and improved mechanical, thermal, and flame-retardant performances. For example, when compared with reference foam, the addition of 2 wt.% of MMT-modified SO filler resulted in the formation of PUR composites with greater mechanical properties (compressive strength, flexural strength) and improved dynamic-mechanical properties (storage modulus). The PUR composites were characterized by better thermal stability as well as improved flame retardancy—e.g., decreased peak rate of heat release (pHRR), reduced total smoke release (TSR), and increased limiting oxygen index (LOI).


2021 ◽  
Vol 11 (4) ◽  
pp. 1411
Author(s):  
Alfredas Rimkus ◽  
Tadas Vipartas ◽  
Jonas Matijošius ◽  
Saulius Stravinskas ◽  
Donatas Kriaučiūnas

This article presents a change in the indicators of a compression ignition (CI) engine by replacing conventional diesel fuel (D100) with pure chicken fat (F100) and mixtures of these fuels. Mixtures of diesel and fat with volume ratios of 70/30, 50/50 and 30/70 were used. Research of the fuel properties was conducted. In order to reduce the fuel viscosity, blends of fat and diesel were heated. The experimental research was conducted at different engine loads with exhaust gas recirculation (EGR) both off and on. The conducted analysis of the combustion process revealed a significant change in the rate of heat release (ROHR) when replacing diesel with chicken fat. Chicken fat was found to increase the CO2 and CO emissions, leaving hydrocarbon (HC) emissions nearly unchanged. Having replaced the D100 with diesel and chicken fat mixtures or F100, a significant reduction in smoke and nitrogen oxide (NOx) emissions was observed when EGR was off. When EGR was on, the smoke level increased, but the blends with chicken fat reduced it significantly, and the increased fat content in the fuel mixture reduced the NOx emissions. The engine’s brake specific fuel consumption (BSFC) increased while the brake thermal efficiency (BTE) decreased, having replaced conventional diesel with chicken fat due to differences in the fuel energy properties and the combustion process.


2021 ◽  
Vol 11 (2) ◽  
pp. 742
Author(s):  
Saugirdas Pukalskas ◽  
Donatas Kriaučiūnas ◽  
Alfredas Rimkus ◽  
Grzegorz Przybyła ◽  
Paweł Droździel ◽  
...  

The global policy solution seeks to reduce the usage of fossil fuels and greenhouse gas (GHG) emissions, and biogas (BG) represents a solutions to these problems. The use of biogas could help cope with increased amounts of waste and reduce usage of fossil fuels. Biogas could be used in compressed natural gas (CNG) engines, but the engine electronic control unit (ECU) needs to be modified. In this research, a spark ignition (SI) engine was tested for mixtures of biogas and hydrogen (volumetric hydrogen concentration of 0, 14, 24, 33, and 43%). In all experiments, two cases of spark timing (ST) were used: the first for an optimal mixture and the second for CNG. The results show that hydrogen increases combustion quality and reduces incomplete combustion products. Because of BG’s lower burning speed, the advanced ST increased brake thermal efficiency (BTE) by 4.3% when the engine was running on biogas. Adding 14 vol% of hydrogen (H2) increases the burning speed of the mixture and enhances BTE by 2.6% at spark timing optimal for CNG (CNG ST) and 0.6% at the optimal mixture ST (mixture ST). Analyses of the rate of heat release (ROHR), temperature, and pressure increase in the cylinder were carried out using utility BURN in AVL BOOST software.


Sign in / Sign up

Export Citation Format

Share Document