Diffusion of liquid hydrogen and oxygen in nonlinear mixed convection nanofluid flow over vertical cone

2019 ◽  
Vol 44 (31) ◽  
pp. 17061-17071 ◽  
Author(s):  
P.M. Patil ◽  
A. Shashikant ◽  
P.S. Hiremath
2019 ◽  
Vol 29 (6) ◽  
pp. 2146-2174 ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
S.H. Doddagoudar ◽  
P.S. Hiremath

Purpose The purpose of this paper is to present the surface roughness effects on mixed convection nanofluid flow with liquid hydrogen/liquid nitrogen diffusion. Design/methodology/approach The small parameter (α) is considered along with the frequency parameter n to study the surface roughness. The non-similar transformations are used to reduce the dimensional non-linear partial differential equations into dimensionless form, and then, the resulting equations are solved with the help of Newton’s Quasilinearization technique and the finite difference scheme. Findings The impacts of several dimensionless parameters such as Brownian diffusion parameter (Nb), thermophoresis parameter (Nt), small parameter (α), etc., are analyzed over various profiles as well as gradients. Also, the investigation is carried out for in presence and absence of nanoparticles. The influence of surface roughness is sinusoidal in nature and is more significant near the origin in case of skin-friction coefficient. The addition of nanoparticles enhances the skin-friction coefficient and reduces the Nusselt number, while its effects are not noticeable in case of mass transfer rates. The presence of suction/blowing, respectively, enhances/decreases the Sherwood number pertaining to the liquid hydrogen. Practical implications The results of the present analysis are expected to be useful for the design engineers of polymer industries in manufacturing good quality polymer sheets. Originality/value To the best of the author’s knowledge, no such investigation has been carried out in the literature.


2020 ◽  
Vol 66 (2 Mar-Apr) ◽  
pp. 153
Author(s):  
P M Patil ◽  
Madhavarao Kulkarni

The objective of the current research paper is to investigate the effects of surface roughness on magnetohydrodynamic nonlinear mixed convection nanofluid flow over vertically moving plate. The highly coupled dimensional nonlinear partial differential equations (NPDE) are converted into dimensionless NPDE along with the boundary conditions with the help of non-similar transformations. The resulting set of dimensionless nonlinear PDE’s are solved by using Quasilinearization technique and implicit finite difference method. Impacts of various dimensionless parameters, namely, Brownian diffusion (Nb), nonlinear mixed convection ( ), nanoparticle buoyancy ratio (Nr), Lewis number (Le), thermophoresis (Nt), frequency (n), magnetic (M) and small parameter ( ) are studied in detail on profiles as well as gradients. The results reveal that increasing values of  increase the velocity profile, while increasing values of Nr decrease the same. Further, increasing values of and n exhibit sinusoidal variations on skin-friction coefficient, heat and nanoparticle mass transfer rates. Moreover, the presence of nonlinear mixed convection parameter has significant effects on fluid flow compared to its absence. In addition to this, rate of heat transfer is analyzed in presence and absence of nanoparticles.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Khaled Al‐Farhany ◽  
Mohammed A. Alomari ◽  
Ahmed Al‐Saadi ◽  
Ali Chamkha ◽  
Hakan F. Öztop ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document