nitrogen diffusion
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 130 (24) ◽  
pp. 245702
Author(s):  
N. H. Nickel ◽  
M. A. Gluba

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7229
Author(s):  
Walerian Arabczyk ◽  
Rafał Pelka ◽  
Izabella Jasińska ◽  
Zofia Lendzion-Bieluń

Iron catalysts for ammonia synthesis/nanocrystalline iron promoted with oxides of potassium, aluminum and calcium were characterized by studying the nitriding process with ammonia in kinetic area of the reaction at temperature of 475 °C. Using the equations proposed by Crank, it was found that the process rate is limited by diffusion through the interface, and the estimated value of the nitrogen diffusion coefficient through the boundary layer is 0.1 nm2/s. The reaction rate can be described by Fick’s first equation. It was confirmed that nanocrystallites undergo a phase transformation in their entire volume after reaching the critical concentration, depending on the active specific surface of the nanocrystallite. Nanocrystallites transform from the α-Fe(N) phase to γ’-Fe4N when the total chemical potential of nitrogen compensates for the transformation potential of the iron crystal lattice from α to γ; thus, the nanocrystallites are transformed from the smallest to the largest in reverse order to their active specific surface area. Based on the results of measurements of the nitriding rate obtained for the samples after overheating in hydrogen in the temperature range of 500–700 °C, the probabilities of the density of distributions of the specific active surfaces of iron nanocrystallites of the tested samples were determined. The determined distributions are bimodal and can be described by the sum of two Gaussian distribution functions, where the largest nanocrystallite does not change in the overheating process, and the size of the smallest nanocrystallites increases with increasing recrystallization temperature. Parallel to the nitriding reaction, catalytic decomposition of ammonia takes place in direct proportion to the active surface of the iron nanocrystallite. Based on the ratio of the active iron surface to the specific surface, the degree of coverage of the catalyst surface with the promoters was determined.


2021 ◽  
Vol 101 (3) ◽  
pp. 31-41
Author(s):  
N. Stechishina ◽  
◽  
M. Stechishin ◽  
A. Martynyuk ◽  
N. Lukianyuk ◽  
...  

One of the modern and effective methods of hardening metals is nitriding in a glow discharge in ammonia or in an anhydrous medium (nitrogen + argon) - BATR. This paper presents the results of experimental studies comparing the results of tribological and physicochemical properties of hardened surfaces obtained by nitriding with autonomous and interconnected BATR modes. The complex of traditionally fixed values of operating parameters (temperature, composition of the gas mixture, pressure and saturation time) without taking into account energy characteristics (voltage, current density and specific discharge power) significantly reduces the technological capabilities of BATR to achieve the necessary physicochemical properties of metal surfaces specified by conditions exploitation. Taking into account the energy characteristics of BATR, a significant reduction in the energy consumption of the nitriding process is achieved. The energy levels of the main subprocesses are significantly different: the formation of nitrides occurs at low energies, surface sputtering occurs at high voltage values, and nitrogen diffusion occurs at increased current density values. In cases where the energy of the flow is insufficient, either a glow discharge may not occur at all, or with a lack of voltage, the nitride ball on the surface is not sprayed and it acts as a barrier that prevents the diffusion process into the inner layers of the metal, which leads to low physicochemical and, correspondingly, tribological indicators of nitrided balls. The quantitative ratio between them and the required operational properties of the metal, respectively, can be achieved only through an independent combination of the energy and operating characteristics of BATR


Vacuum ◽  
2021 ◽  
pp. 110632
Author(s):  
L. Torrisi ◽  
M. Cutroneo ◽  
A. Torrisi ◽  
L. Silipigni

2021 ◽  
Vol 12 (35) ◽  
pp. 8453-8459
Author(s):  
Jiafei Pang ◽  
Wenyuan Jin ◽  
Xiaoyu Kuang ◽  
Cheng Lu

2021 ◽  
Vol 1990 (1) ◽  
pp. 012004
Author(s):  
K B Polikevich ◽  
A I Plokhikh ◽  
L P Fomina ◽  
V E Putyrskii

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3951
Author(s):  
Tadeusz Frączek ◽  
Rafał Prusak ◽  
Marzena Ogórek ◽  
Zbigniew Skuza

The study assessed the effect of ion nitriding on the properties of the surface layer of Grade 5 titanium alloy used, among others, in medicine. Titanium and its alloys have low hardness and insufficient wear resistance in conditions of friction which limits the use of these materials. The improvement of these properties is only possible by the appropriate modification of the surface layer of these alloys. The ion nitriding process was carried out in a wide temperature range, i.e., 530–590 °C, and in the time range 5–17 h. Two variants of nitriding were applied: cathodic (conventional) nitriding and nitriding using the active screen method. The research results presented in this article allow for stating that each of the applied nitriding variants improves the analysed properties (nitrogen diffusion depth, hardness, wear resistance, microstructure analysis and surface topography) of the surface layers in relation to the material before nitriding. The hardness increased in every nitriding variant (the use of the additional active screen increased the hardness to 1021 HK0.025). The greatest increase in titanium abrasion resistance was found for surfaces after cathodic nitriding with an active screen. Each of the applied nitriding variants resulted in surface development.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3572
Author(s):  
Robert Balerio ◽  
Hyosim Kim ◽  
Andres Morell-Pacheco ◽  
Laura Hawkins ◽  
Ching-Heng Shiau ◽  
...  

Plasma nitridation was conducted to modify the surfaces of Zircaloy-4. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman analysis were used to characterize microstructures and phases. Surface indentation and cross-sectional indentation were performed to evaluate mechanical property changes. Nitridation forms a thin layer of ZrN phase, followed by a much deeper layer affected by nitrogen diffusion. The ZrN phase is confirmed by both TEM and Raman characterization. The Raman peaks of ZrN phase show a temperature dependence. The intensity increases with increasing nitridation temperatures, reaches a maximum at 700 °C, and then decreases at higher temperatures. The ZrN layer appears as continuous small columnar grains. The surface polycrystalline ZrN phase is harder than the bulk by a factor of ~8, and the nitrogen diffusion layer is harder by a factor of ~2–5. The activation energy of nitrogen diffusion was measured to be 2.88 eV. The thickness of the nitrogen-hardened layer is controllable by changing the nitridation temperature and duration.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 366
Author(s):  
Mariana I. Rakhmanova ◽  
Andrey Yu. Komarovskikh ◽  
Yuri N. Palyanov ◽  
Alexander A. Kalinin ◽  
Olga P. Yuryeva ◽  
...  

For this study, 21 samples of colorless octahedral diamonds (weighing 5.4–55.0 mg) from the Mir pipe (Yakutia) were investigated with photoluminescence (PL), infrared (IR), and electron paramagnetic resonance (EPR) spectroscopies. Based on the IR data, three groups of diamonds belonging to types IIa, IaAB, and IaB were selected and their spectroscopic features were analyzed in detail. The three categories of stones exhibited different characteristic PL systems. The type IaB diamonds demonstrated dominating nitrogen–nickel complexes S2, S3, and 523 nm, while they were less intensive or even absent in the type IaAB crystals. The type IIa diamonds showed a double peak at 417.4+418.7 nm (the 418 center in this study), which is assumed to be a nickel–boron defect. In the crystals analyzed, no matter which type, 490.7, 563.5, 613, and 676.3 nm systems of various intensity could be detected; moreover, N3, H3, and H4 centers were very common. The step-by-step annealing experiments were performed in the temperature range of 600–1700 °C. The treatment at 600 °C resulted in the 563.5 nm system’s disappearance; the interstitial carbon vacancy annihilation could be considered as a reason. The 676.5 nm and 613 nm defects annealed out at 1500 °C and 1700 °C, respectively. Furthermore, as a result of annealing at 1500 °C, the 558.5 and 576 nm centers characteristic of superdeep diamonds from São Luis (Brazil) appeared. These transformations could be explained by nitrogen diffusion or interaction with the dislocations and/or vacancies produced.


Sign in / Sign up

Export Citation Format

Share Document