Impacts of surface roughness on mixed convection nanofluid flow with liquid hydrogen/nitrogen diffusion

2019 ◽  
Vol 29 (6) ◽  
pp. 2146-2174 ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
S.H. Doddagoudar ◽  
P.S. Hiremath

Purpose The purpose of this paper is to present the surface roughness effects on mixed convection nanofluid flow with liquid hydrogen/liquid nitrogen diffusion. Design/methodology/approach The small parameter (α) is considered along with the frequency parameter n to study the surface roughness. The non-similar transformations are used to reduce the dimensional non-linear partial differential equations into dimensionless form, and then, the resulting equations are solved with the help of Newton’s Quasilinearization technique and the finite difference scheme. Findings The impacts of several dimensionless parameters such as Brownian diffusion parameter (Nb), thermophoresis parameter (Nt), small parameter (α), etc., are analyzed over various profiles as well as gradients. Also, the investigation is carried out for in presence and absence of nanoparticles. The influence of surface roughness is sinusoidal in nature and is more significant near the origin in case of skin-friction coefficient. The addition of nanoparticles enhances the skin-friction coefficient and reduces the Nusselt number, while its effects are not noticeable in case of mass transfer rates. The presence of suction/blowing, respectively, enhances/decreases the Sherwood number pertaining to the liquid hydrogen. Practical implications The results of the present analysis are expected to be useful for the design engineers of polymer industries in manufacturing good quality polymer sheets. Originality/value To the best of the author’s knowledge, no such investigation has been carried out in the literature.

Author(s):  
Saeed Dinarvand ◽  
Reza Hosseini ◽  
Ioan Pop

Purpose – The current study is mainly motivated by the need to the development of the transient MHD mixed convection stagnation-point flow and heat transfer of an electrically conducting nanofluid over a vertical permeable stretching/shrinking sheet by means of Tiwari-Das nanofluid model. The purpose of this paper is to investigate the effects of the parameters governing the flow i.e. the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter and the velocity ratio parameter on dimensionless velocity and temperature distributions, skin friction coefficient and local Nusselt number. Design/methodology/approach – The mathematical model has been formulated based on Tiwari-Das nanofluid model. Three different types of water-based nanofluid with copper, aluminum oxide (alumina) and titanium dioxide (titania) as nanoparticles are considered in this investigation. Using appropriate similarity variables, the governing equations are transformed into nonlinear ordinary differential equations in the dimensionless stream function, which is solved analytically by the well-know homotopy analysis method. The present simulations agree closely with the previous studies in the especial cases. Findings – The results show that by increasing the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter or reducing the velocity ratio parameter, the skin friction coefficient enhances. Furthermore, the local Nusselt number enhances with different rates by increasing the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter and the velocity ratio parameter. Besides, the skin friction coefficient and the local Nusselt number are highest for copper-water nanofluid compared to the alumina-water and titania-water nanofluids. Originality/value – Tiwari-Das nanofluid model has not been applied for the flow with these characteristics as mentioned in the paper. A comprehensive survey on boundary layer behavior has been presented. There are few studies regarding as analysis on thermal and hydrodynamics boundary layer. All plots presented in the paper are new and did not report in any other study. The effects of the parameters governing the flow on skin friction coefficient and local Nusselt number have been illustrated in the paper while there are some conflicts with previous published article that have been interpreted in details in the paper.


Author(s):  
Rajesh Vemula ◽  
A J Chamkha ◽  
Mallesh M. P.

Purpose – The purpose of this paper is to focus on the numerical modelling of transient natural convection flow of an incompressible viscous nanofluid past an impulsively started semi-infinite vertical plate with variable surface temperature. Design/methodology/approach – The problem is governed by the coupled non-linear partial differential equations with appropriate boundary conditions. A robust, well-tested, Crank-Nicolson type of implicit finite-difference method, which is unconditionally stable and convergent, is used to solve the governing non-linear set of partial differential equations. Findings – The local and average values of the skin-friction coefficient (viscous drag) and the average Nusselt number (the rate of heat transfer) decreased, while the local Nusselt number increased for all nanofluids, namely, aluminium oxide-water, copper-water, titanium oxide-water and silver-water with an increase in the temperature exponent m. Selecting aluminium oxide as the dispersing nanoparticles leads to the maximum average Nusselt number (the rate of heat transfer), while choosing silver as the dispersing nanoparticles leads to the minimum local Nusselt number compared to the other nanofluids for all values of the temperature exponent m. Also, choosing silver as the dispersing nanoparticles leads to the minimum skin-friction coefficient (viscous drag), while selecting aluminium oxide as the dispersing nanoparticles leads to the maximum skin-friction coefficient (viscous drag) for all values of the temperature exponent m. Research limitations/implications – The Brinkman model for dynamic viscosity and Maxwell-Garnett model for thermal conductivity are employed. The governing boundary layer equations are written according to The Tiwari-Das nanofluid model. A range of nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. Practical implications – The present simulations are relevant to nanomaterials thermal flow processing in the chemical engineering and metallurgy industries. This study also provides an important benchmark for further simulations of nanofluid dynamic transport phenomena of relevance to materials processing, with alternative computational algorithms (e.g. finite element methods). Originality/value – This paper is relatively original and illustrates the influence of variable surface temperature on transient natural convection flow of a viscous incompressible nanofluid and heat transfer from an impulsively started semi-infinite vertical plate.


Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

PurposeThis paper aims to investigate the steady flow and heat transfer of a Cu-Al2O3/water hybrid nanofluid over a nonlinear permeable stretching/shrinking surface with radiation effects. The surface velocity condition is assumed to be of the power-law form with an exponent of 1/3. The governing equations of the problem are converted into a system of similarity equations by using a similarity transformation.Design/methodology/approachThe problem is solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The results of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are presented through graphs and tables for several values of the parameters. The effects of these parameters on the flow and heat transfer characteristics are examined and discussed.FindingsResults found that dual solutions exist for a certain range of the stretching/shrinking and suction parameters. The increment of the skin friction coefficient and reduction of the local Nusselt number on the shrinking sheet is observed with the increasing of copper (Cu) nanoparticle volume fractions for the upper branch. The skin friction coefficient and the local Nusselt number increase when suction parameter is increased for the upper branch. Meanwhile, the temperature increases in the presence of the radiation parameter for both branches.Originality/valueThe problem of Cu-Al2O3/water hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface with radiation effects is the important originality of the present study where the dual solutions for the flow reversals are obtained.


2016 ◽  
Vol 26 (7) ◽  
pp. 2235-2251 ◽  
Author(s):  
J. Rajakumar ◽  
P. Saikrishnan ◽  
A. Chamkha

Purpose The purpose of this paper is to consider axisymmetric mixed convection flow of water over a sphere with variable viscosity and Prandtl number and an applied magnetic field. Design/methodology/approach The non-similar solutions have been obtained from the origin of the streamwise co-ordinate to the point of zero skin friction using quasilinearization technique with an implicit finite-difference scheme. Findings The effect of M is not notable on the temperature and heat transfer coefficient when λ is large. The skin friction coefficient and velocity profile are enhance with the increase of MHD parameter M when λ is small. Viscous dissipation has no significant on the skin friction coefficient under MHD effect. For M=1, the movement of the slot or slot suction or slot injection do not cause any effect on flow separation. The slot suction and the movement of the slot in downstream direction delay the point of zero skin friction for M=0. Originality/value The present results are original and new for water boundary-layer flow over sphere in mixed convection flow with MHD effect and non-uniform mass transfer. So this study would be useful in analysing the skin friction and heat transfer coefficient on sphere of mixed convection flow of water boundary layer with MHD effect.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 195 ◽  
Author(s):  
Muhammad Afridi ◽  
Muhammad Qasim ◽  
Abderrahim Wakif ◽  
Abid Hussanan

The primary objective of the present work is to study the effects of heat transfer and entropy production in a nanofluid flow over a curved surface. The influences of Lorentz force and magnetic heating caused by the applied uniform magnetic field and energy dissipation by virtue of frictional heating are considered in the problem formulation. The effects of variable thermal conductivity are also encountered in the present model. The dimensional governing equations are reduced to dimensionless form by introducing the similarity transformations. The dimensionless equations are solved numerically by using the Chebyshev–Gauss–Lobatto spectral method (CGLSM). The rate of increase/increase in the local Nusselt number and skin friction coefficient are estimated by using a linear regression model. The expression for dimensionless entropy production is computed by employing the solutions obtained from dimensionless momentum and energy equations. Various graphs are plotted in order to examine the effects of physical flow parameters on velocity, temperature, and entropy production. The increase in skin friction coefficient with magnetic parameter is high for nanofluid containing copper nanoparticles as compared to silver nanoparticles. The analysis reveals that velocity, temperature, and entropy generation decrease with the rising value of dimensionless radius of curvature. Comparative analysis also reveals that the entropy generation during the flow of nanofluid containing copper nanoparticles is greater than that of containing silver nanoparticles.


2019 ◽  
Vol 29 (12) ◽  
pp. 4507-4530 ◽  
Author(s):  
Muhammad Ijaz Khan ◽  
Salman Ahmad ◽  
Tasawar Hayat ◽  
M. Waleed Ahmad Khan ◽  
Ahmed Alsaedi

Purpose The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined magnetic field, Joule heating, viscous dissipation, heat source/sink and chemical reaction. Characteristics of nanofluid are described by Brownian motion and thermophoresis effect. At surface of the sheet zero mass flux and convective boundary condition are considered. Design/methodology/approach Considered flow problem is mathematically modeled and the governing system of partial differential equations is transformed into ordinary ones by using suitable transformation. The transformed ordinary differential equations system is figure out by homotopy algorithm. Outcomes of pertinent flow variables on entropy generation, skin friction, concentration, temperature, velocity, Bejan, Sherwood and Nusselts numbers are examined in graphs. Major outcomes are concluded in final section. Findings Velocity profile increased versus higher estimation of material and wall thickness parameter while it decays through larger Hartmann number. Furthermore, skin friction coefficient upsurges subject to higher values of Hartmann number and magnitude of skin friction coefficient decays via materials parameters. Thermal field is an increasing function of Hartmann number, radiation parameter, thermophoresis parameter and Eckert number. Originality/value The authors have discussed entropy generation in flow of thixotropic nanofluid over a variable thicked surface. No such consideration is yet published in the literature.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Mostafa Mahmoud ◽  
Shimaa Waheed

A theoretical analysis is performed to study the flow and heat transfer characteristics of magnetohydrodynamic mixed convection flow of a micropolar fluid past a stretching surface with slip velocity at the surface and heat generation (absorption). The transformed equations solved numerically using the Chebyshev spectral method. Numerical results for the velocity, the angular velocity, and the temperature for various values of different parameters are illustrated graphically. Also, the effects of various parameters on the local skin-friction coefficient and the local Nusselt number are given in tabular form and discussed. The results show that the mixed convection parameter has the effect of enhancing both the velocity and the local Nusselt number and suppressing both the local skin-friction coefficient and the temperature. It is found that local skin-friction coefficient increases while the local Nusselt number decreases as the magnetic parameter increases. The results show also that increasing the heat generation parameter leads to a rise in both the velocity and the temperature and a fall in the local skin-friction coefficient and the local Nusselt number. Furthermore, it is shown that the local skin-friction coefficient and the local Nusselt number decrease when the slip parameter increases.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Zahir Shah ◽  
Saeed Islam ◽  
Hamza Ayaz ◽  
Saima Khan

The present research aims to examine the micropolar nanofluid flow of Casson fluid between two parallel plates in a rotating system with effects of thermal radiation. The influence of Hall current on the micropolar nanofluids have been taken into account. The fundamental leading equations are transformed to a system of nonlinear differential equations using appropriate similarity variables. An optimal and numerical tactic is used to get the solution of the problem. The convergence and comparison have been shown numerically. The impact of the Hall current, Brownian movement, and thermophoresis phenomena of Casson nanofluid have been mostly concentrated in this investigation. It is found that amassed Hall impact decreases the operative conductivity which intends to increase the velocity field. The temperature field enhances with larger values of Brownian motion thermophoresis effect. The impacts of the Skin friction coefficient, heat flux, and mass flux have been deliberate. The skin friction coefficient is observed to be larger for k=0, as compared to the case of k=0.5. Furthermore, for conception and visual demonstration, the embedded parameters have been deliberated graphically.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1450
Author(s):  
Essam R. El-Zahar ◽  
Ahmed M. Rashad ◽  
Laila F. Seddek

The goal of this investigation is to explore the influence of viscous dissipation and Brownian motion on Jeffrey nanofluid flow over an unsteady moving surface with thermophoresis and mixed convection. Zero mass flux is also addressed at the surface such that the nanoparticles fraction of maintains itself on huge obstruction. An aiding transformation is adopted to renovate the governing equations into a set of partial differential equations which is solved using a new fourth-order finite difference continuation method and various graphical outcomes are discussed in detail with several employed parameters. The spectacular influence of pertinent constraints on velocity and thermal curves are inspected through various plots. Computational data for the heat transfer rate and skin-friction coefficient are also reported graphically. Graphical outcomes indicate that an augmentation in buoyance ratio and thermophoretic parameter leads to diminish the velocity curves and increase the temperature curves. Furthermore, it is inspected that escalating Deborah number exhibits increasing in the skin friction and salient decreasing heat transmission. Increasing magnetic strength leads to a reduction in the skin friction and enhancement in the Nusselt number, whilst a reverse reaction is manifested with mixed convection aspects.


Author(s):  
Ibrahim Yakubu Seini ◽  
Daniel Oluwole Makinde

Purpose – The purpose of this paper is to investigate the MHD boundary layer flow of viscous, incompressible and electrically conducting fluid near a stagnation-point on a vertical surface with slip. Design/methodology/approach – In the study, the temperature of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the stagnation-point. The governing differential equations are transformed into systems of ordinary differential equations and solved numerically by a shooting method. Findings – The effects of various parameters on the heat transfer characteristics are discussed. Graphical results are presented for the velocity and temperature profiles whilst the skin-friction coefficient and the rate of heat transfers near the surface are presented. It is observed that the presence of the magnetic field increases the skin-friction coefficient and the rate of heat transfer near the surface towards the stagnation-point. Originality/value – The presence of magnetic field increases the skin-friction coefficient and the rate of heat transfer near the surface towards the stagnation-point.


Sign in / Sign up

Export Citation Format

Share Document