nonlinear mixed convection
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 20)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Vol 10 (4) ◽  
pp. 580-589
Author(s):  
M. Venkateswarlu ◽  
P. Bhaskar ◽  
O. D. Makinde

This report is executed to examine the task of assimilating parameters on bipartite convection stream structure in a sloped pipeline while certain plate is disorderly warmed. The dictating motivation and energy identifications are ascertained and consequent expressions for thermal reading, liquid movement, fanning friction and stress flatten are acquired. The purpose of non-linear Boussinesq simulation is to escalate liquid movement, inverse stream generation at the channel plates, stress flatten, and fanning factor. In particular, the liquid motion escalates at the channel left portion and depletes at the channel right portion with the progress of time. A particular case of our development shows an excellent compromise with the previous consequences in the literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wubshet Ibrahim ◽  
Tezera Gizewu

This paper examined the three-dimensional steady thin film flow of tangent hyperbolic fluid with nonlinear mixed convection flow and entropy generation past a stretching surface under the influence of magnetic field. For the flow problem, the Cattaneo–Christov heat and mass diffusion model was employed to examine heat and mass transfer characteristics and impacts of the normally directed magnetic field. To transform nonlinear PDEs into ODEs, the variable transformation technique was used. The bvp4c algorithm was implemented to solve these ODEs. The behavior of every leading parameter on the velocities, temperature, concentration profile, entropy generation, and Bejan number was reported with tabular and figurative form. The results show that as the values of Br increase, the entropy generation enhances, but the Bejan number decreases. Moreover, as the values of B increase, the opposite characteristics are observed in entropy generation and Bejan number graphs. Furthermore, the skin friction coefficient number, local Nusselt number, and Sherwood number are graphically discussed for the active involved parameters. The best agreement is recorded when we compare this paper with the previous literature for various values of M .


Author(s):  
M Ijaz Khan ◽  
Yu-Ming Chu ◽  
Sumaira Qayyum ◽  
Shahid Farooq ◽  
A Aldabesh

This paper deals with Marangoni convective flow of Carreau fluid. Boundary condition for momentum equation is considered to be Marangoni type. Thermal energy produces when current passes through the electrical conductor and this process is called Joule heating. Viscous dissipation is also applied in thermal equation. Nonlinear mixed convection for temperature is considered. Governing equations of PDE's are converted to ODE's by implementation of transformation. ND-Solve MATHEMATICA method is used to solve the equations. Parameters result against temperature, velocity, entropy rate, Bejan number, Skin friction and Nusselt number is examined via graphs. Due to increase in fluid parameter velocity of the fluid reduces while increasing impact is seen for temperature. Temperature is increasing function of Eckert number. Entropy generation also shows rising impact via fluid parameter while Bejan number decays. Drag force of surface decays via fluid parameter. Nusselt number is in direct relation with Prandtl and Eckert number.


2020 ◽  
Vol 41 (11) ◽  
pp. 1685-1696
Author(s):  
T. Hayat ◽  
F. Haider ◽  
A. Alsaedi

Abstract An analysis of the mixed convective flow of viscous fluids induced by a nonlinear inclined stretching surface is addressed. Heat and mass transfer phenomena are analyzed with additional effects of heat generation/absorption and activation energy, respectively. The nonlinear Darcy-Forchheimer relation is deliberated. The dimensionless problem is obtained through appropriate transformations. Convergent series solutions are obtained by utilizing an optimal homotopic analysis method (OHAM). Graphs depicting the consequence of influential variables on physical quantities are presented. Enhancement in the velocity is observed through the local mixed convection parameter while an opposite trend of the concentration field is noted for the chemical reaction rate parameter.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wubshet Ibrahim ◽  
Chaluma Zemedu

In this paper, two-dimensional steady laminar boundary layer flow of a nonlinear mixed convection flow of micropolar nanofluid with Soret and magnetic field effect over a nonisothermal sphere is evaluated. The mathematical formulation for the flow problem has been made with appropriate similarity transformation and dimensionless variables, and the main nonlinear boundary value problems were reduced into mixed high-order nonlinear ordinary differential equations. Solution for velocity, microrotation, temperature, and concentration has been obtained numerically. The equations were calculated using method bvp4c from Matlab software for various quantities of main parameters. The effects of various parameters on skin friction coefficient f″0, wall duo stress coefficient -G′0, and convection mass transfer coefficient -Φ′0 are analysed and presented through the graphs and tables. The convergence test has been maintained. For the number of points greater than the suitable mesh number of points, the precision is not influenced but the set time is increased. Moreover, a comparison with a previous paper, obtainable in the literature, has been presented and an excellent agreement is obtained. The findings indicate that an increase in the values of nonisothermal parameters (m, P), magnetic Ma, thermal and solutal nonlinear convection (λ, s) parameter, and Soret number is to enhance the temperature difference between the boundary layer and ambient fluid to diffuse which increases the velocity profile f′ζ and their boundary layer thicknesses near the surface of the sphere.


Sign in / Sign up

Export Citation Format

Share Document