Post-synthetic Ti exchanged UiO-66-NH2 metal-organic frameworks with high faradaic efficiency for electrochemical nitrogen reduction reaction

Author(s):  
Jiabin Tan ◽  
Xiaobo He ◽  
Fengxiang Yin ◽  
Xin Liang ◽  
Guoru Li
Author(s):  
Xu Zhang ◽  
Xiaoman Li ◽  
Wanguo Gao ◽  
Shijian Luo ◽  
Sen-Da Su ◽  
...  

Metal node substitution in metal organic frameworks is an efficient strategy to enhance photocatalytic properties. Herein, bimetallic CeZr5-MOFs UiO-66 photocatalysts were successfully synthesized by partial replacing Zr with Ce for...


2021 ◽  
Vol 31 (17) ◽  
pp. 2010052
Author(s):  
Islam E. Khalil ◽  
Cong Xue ◽  
Wenjing Liu ◽  
Xiaohan Li ◽  
Yu Shen ◽  
...  

2021 ◽  
pp. 150801
Author(s):  
Jiabin Tan ◽  
Xiaobo H ◽  
Fengxiang Yin ◽  
Xin Liang ◽  
Guoru Li ◽  
...  

2021 ◽  
Author(s):  
Lili Fan ◽  
Zixi Kang ◽  
Mengfei Li ◽  
Daofeng Sun

Among various kinds of materials that have been investigated as electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), metal-organic frameworks (MOFs) emerge as...


2021 ◽  
Author(s):  
Shengbo Zhang ◽  
Miaomiao Han ◽  
Tongfei Shi ◽  
Haimin Zhang ◽  
Yue Lin ◽  
...  

Abstract The intriguing features of single-atom catalysts (SACs) could bring catalysis into a new paradigm, however, controllably synthesising SACs with desired SA loadings and coordination forms are challenging. Here, we report an adsorption-regulated approach to precisely control the synthesis of bimetallic Fe-Co SAs on carbon. Bacterial cellulose (BC) is utilised as an adsorption regulator to controllably impregnate Fe3+/Co2+ on BC and through carbonisation to anchor Fe-Co SAs on BC-derived carbon via bimetallic [(O-C2)3Fe-Co(O-C2)3] coordination with desired Fe/Co contents and atomic ratios. Under electrocatalytic nitrogen reduction reaction (NRR) conditions, [(O-C2)3Fe-Co(O-C2)3] is operando transformed to [(O-C2)3Fe-Co(O-C)C2] that promotes and sustains NRR performance. A superb ammonia yield of 574.8 ± 35.3 μg h-1 mgcat.-1 with an exceptional faradaic efficiency of 73.2 ± 4.6% are obtained from an electrocatalyst with the highest bimetallic Fe-Co site density. The exemplified synthetic approach would be of generically applicable to controllably anchor SAs on carbon that enables meaningfully investigate and rationally design SACs.


Author(s):  
Yu Guo ◽  
Shuai Yang ◽  
Qing Xu ◽  
Ping Wu ◽  
Zheng Jiang ◽  
...  

Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) are getting significant attention for enormous application because of their designable and controllable skeletons and porosities. The integrated materials of MOFs and...


Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


Sign in / Sign up

Export Citation Format

Share Document