bacterial cellulose
Recently Published Documents





2022 ◽  
Vol 0 (0) ◽  
Kai Yuan ◽  
Xiaofei Li ◽  
Xudong Yang ◽  
Shuai Luo ◽  
Xi Yang ◽  

Abstract In this study, the effect of bacterial cellulose nanofibers (BCNF) incorporation on the structural and rheological properties of casein gels was investigated, where the mixed BCNF and casein gels were prepared by adding gluconic acid δ-lactone (GDL) to acidify the mixed polymer solutions at 3.0% casein concentration (w/v) and varying BCNF concentrations (0–0.5%, w/v). By changing the addition amount of GDL, the mechanical and structural properties of the mixed gels were studied at above, near and below the electric point (pI) of the casein. At pH above the pI of the casein, the introduction of BCNF initially increased the gel strength, but further addition of BCNF weakened the mixed gels. At near and below the pI of the casein, the incorporation of BCNF continuously increased the gel strength. Besides, all gels showed good structural homogeneity, without macroscopic phase separation occurring, which indicated good compatibility of BCNF with the casein gels.

2022 ◽  
pp. 2110557
Seulgi Kim ◽  
Jina Ko ◽  
Jae Hyuk Choi ◽  
Jeong Yi Kang ◽  
Chanoong Lim ◽  

Jemin Son ◽  
Kang Hyun Lee ◽  
Taek Lee ◽  
Hyun Soo Kim ◽  
Weon Ho Shin ◽  

Biorefineries are attracting attention as an alternative to the petroleum industry to reduce carbon emissions and achieve sustainable development. In particular, because forests play an important role in potentially reducing greenhouse gas emissions to net zero, alternatives to cellulose produced by plants are required. Bacterial cellulose (BC) can prevent deforestation and has a high potential for use as a biomaterial in various industries such as food, cosmetics, and pharmaceuticals. This study aimed to improve BC production from lignocellulose, a sustainable feedstock, and to optimize the culture conditions for Gluconacetobacter xylinus using Miscanthus hydrolysates as a medium. The productivity of BC was improved using statistical optimization of the major culture parameters which were as follows: temperature, 29 °C; initial pH, 5.1; and sodium alginate concentration, 0.09% (w/v). The predicted and actual values of BC production in the optimal conditions were 14.07 g/L and 14.88 g/L, respectively, confirming that our prediction model was statistically significant. Additionally, BC production using Miscanthus hydrolysates was 1.12-fold higher than in the control group (commercial glucose). Our result indicate that lignocellulose can be used in the BC production processes in the near future.

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 192
Tatiana G. Volova ◽  
Svetlana V. Prudnikova ◽  
Evgeniy G. Kiselev ◽  
Ivan V. Nemtsev ◽  
Alexander D. Vasiliev ◽  

The synthesis of bacterial cellulose (BC) by Komagataeibacter xylinus strain B-12068 was investigated on various C-substrates, under submerged conditions with stirring and in static surface cultures. We implemented the synthesis of BC on glycerol, glucose, beet molasses, sprat oil, and a mixture of glucose with sunflower oil. The most productive process was obtained during the production of inoculum in submerged culture and subsequent growth of large BC films (up to 0.2 m2 and more) in a static surface culture. The highest productivity of the BC synthesis process was obtained with the growth of bacteria on molasses and glycerol, 1.20 and 1.45 g/L per day, respectively. We obtained BC composites with silver nanoparticles (BC/AgNPs) and antibacterial drugs (chlorhexidine, baneocin, cefotaxime, and doripenem), and investigated the structure, physicochemical, and mechanical properties of composites. The disc-diffusion method showed pronounced antibacterial activity of BC composites against E. coli ATCC 25922 and S. aureus ATCC 25923.

Sign in / Sign up

Export Citation Format

Share Document