Existence of Chaos, dynamical behaviour with fractional order derivatives and modified adaptive function projective synchronization with uncertain parameters of a chaotic system

Optik ◽  
2017 ◽  
Vol 131 ◽  
pp. 89-103 ◽  
Author(s):  
S.K. Agrawal ◽  
K. Vishal
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chunde Yang ◽  
Hao Cai ◽  
Ping Zhou

A modified function projective synchronization for fractional-order chaotic system, called compound generalized function projective synchronization (CGFPS), is proposed theoretically in this paper. There are one scaling-drive system, more than one base-drive system, and one response system in the scheme of CGFPS, and the scaling function matrices come from multidrive systems. The proposed CGFPS technique is based on the stability theory of fractional-order system. Moreover, we achieve the CGFPS between three-driver chaotic systems, that is, the fractional-order Arneodo chaotic system, the fractional-order Chen chaotic system, and the fractional-order Lu chaotic system, and one response chaotic system, that is, the fractional-order Lorenz chaotic system. Numerical experiments are demonstrated to verify the effectiveness of the CGFPS scheme.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Yehong Yang ◽  
Guohua Cao

This paper investigates the modified function projective synchronization between fractional-order chaotic systems, which are partially linear financial systems with uncertain parameters. Based on the stability theory of fractional-order systems and the Lyapunov matrix equation, a controller is obtained for the synchronization between fractional-order financial chaotic systems. Using the controller, the error systems converged to zero as time tends to infinity, and the uncertain parameters were also estimated so that the phenomenon of parameter distortion was effectively avoided. Numerical simulations demonstrate the validity and feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document