Novel conditions for soliton breathers of the complex modified Korteweg–de Vries equation with variable coefficients

Optik ◽  
2018 ◽  
Vol 172 ◽  
pp. 1117-1122 ◽  
Author(s):  
V.N. Serkin ◽  
T.L. Belyaeva
2020 ◽  
Vol 52 (9) ◽  
pp. 27-38
Author(s):  
Sergey I. Lyashko ◽  
Valeriy H. Samoilenko ◽  
Yulia I. Samoilenko ◽  
Igor V. Gapyak ◽  
Nataliya I. Lyashko ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
pp. 410-421
Author(s):  
S. I. Lyashko ◽  
◽  
V. H. Samoilenko ◽  
Yu. I. Samoilenko ◽  
I. V. Gapyak ◽  
...  

The paper deals with the Korteweg-de Vries equation with variable coefficients and a small parameter at the highest derivative. The asymptotic step-like solution to the equation is obtained by the non-linear WKB technique. An algorithm of constructing the higher terms of the asymptotic step-like solutions is presented. The theorem on the accuracy of the higher asymptotic approximations is proven. The proposed technique is demonstrated by example of the equation with given variable coefficients. The main term and the first asymptotic approximation of the given example are found, their analysis is done and statement of the approximate solutions accuracy is presented.


2018 ◽  
Vol 73 (3) ◽  
pp. 207-213 ◽  
Author(s):  
Rehab M. El-Shiekh

AbstractIn this paper, the integrability of the (2+1)-dimensional cylindrical modified Korteweg-de Vries equation and the (3+1)-dimensional cylindrical Korteweg-de Vries equation with variable coefficients arising in dusty plasmas in its generalised form was studied by two different techniques: the Painlevé test and the consistent Riccati expansion solvability. The integrability conditions and Bäcklund transformations are constructed. By using Bäcklund transformations and the solutions of the Riccati equation many new exact solutions are found for the two equations in this study. Finally, the application of the obtained solutions in dusty plasmas is investigated.


2012 ◽  
Vol 16 (5) ◽  
pp. 1476-1479 ◽  
Author(s):  
Sheng Zhang ◽  
Qun Gao ◽  
Qian-An Zong ◽  
Dong Liu

As a typical mathematical model in fluids and plasmas, Korteweg-de Vries equation is famous. In this paper, the Exp-function method is extended to a nonisos-pectral Korteweg-de Vries type equation with three variable coefficients, and multi-wave solutions are obtained. It is shown that the Expfunction method combined with appropriate ansatz may provide with a straightforward, effective and alternative method for constructing multi-wave solutions of variable-coefficient non-linear evolution equations.


2021 ◽  
Vol 8 (3) ◽  
pp. 368-378
Author(s):  
S. I. Lyashko ◽  
◽  
V. H. Samoilenko ◽  
Yu. I. Samoilenko ◽  
N. I. Lyashko ◽  
...  

The paper deals with the Korteweg-de Vries equation with variable coefficients and a small parameter at the highest derivative. The non-linear WKB technique has been used to construct the asymptotic step-like solution to the equation. Such a solution contains regular and singular parts of the asymptotics. The regular part of the solution describes the background of the wave process, while its singular part reflects specific features associated with soliton properties. The singular part of the searched asymp\-totic solution has the main term that, like the soliton solution, is the quickly decreasing function of the phase variable $\tau$. In contrast, other terms do not possess this property. An algorithm of constructing asymptotic step-like solutions to the singularly perturbed Korteweg--de Vries equation with variable coefficients is presented. In some sense, the constructed asymptotic solution is similar to the soliton solution to the Korteweg-de Vries equation $u_t+uu_x+u_{xxx}=0$. Statement on the accuracy of the main term of the asymptotic solution is proven.


Author(s):  
V. Samoilenko ◽  
Yu. Samoilenko ◽  
M. Orlova

Problem on studying asymptotic one-phase soliton-like solutions to the Korteweg–de Vries equation with variable coefficients and a small parameter of the first degree at the highest derivative is considered for the case of non-zero background. There is given an algorithm of constructing the solutions for general case. The algorithm is demonstrated for the equation with some given variable coefficients.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xueqin Wang ◽  
Yadong Shang ◽  
Huahui Di

We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations.


Sign in / Sign up

Export Citation Format

Share Document