Manipulation of electromagnetically induced transparency in all-dielectric metamaterials: From on-off to double transparent windows

Optik ◽  
2020 ◽  
Vol 223 ◽  
pp. 165637
Author(s):  
Sen Hu ◽  
Dan Liu ◽  
Helin Yang
2021 ◽  
Author(s):  
Yuan-Zhe Sun ◽  
Zi-Han Guo ◽  
Cheng-Jing Gao ◽  
Hai-Feng Zhang

Abstract Noted a linear-to-circular polarization comb based on electromagnetically induced transparency (EIT) with hybrid metal-graphene metamaterial in terahertz (THz) spectroscopy. Due to the near field coupling between the bright mode of metal cut-wire (MCW) and multiple dark modes, the multi-peak EIT effect is exhibited under the x-polarized incidence supported by the three-level theory. With another orthogonal MCW etched on the back of the SiO2, the asymmetry responses in both polarized incidences (x- and y-polarized waves) further triggers the linear-to-circular polarization conversion (LTCPC). The values of four corresponding circular-polarized frequencies combined with transmission coefficients respectively are 0.90 THz with 0.45, 1.02 THz with 0.64, 1.15 THz with 0.60, 1.32 THz with 0.53, confirmed via relevant axial ratios and the electric field distributions. On the other hand, the drastic phase changes in transparent windows raise high group delays, among which the maximum value approaches 325 ps. Additionally, DC-voltage-driven graphene strips are doped at both ends of the back MCW to enhance the reconfigurability, superior tunable transmission behaviors illuminated by y-polarization with obvious changes at 0.90 THz and 1.02 THz can be achieved with the dynamic Fermi level fluctuating between 0.01 eV and 0.8 eV. Such an implementation creates a novel path to polarization modulators, signal transceivers, and information transmission devices.


2020 ◽  
Vol 9 (5) ◽  
pp. 243-246
Author(s):  
Pei-Chen Kuan ◽  
Chang Huang ◽  
Shau-Yu Lan

AbstractWe implement slow-light under electromagnetically induced transparency condition to measure the motion of cold atoms in an optical lattice undergoing Bloch oscillation. The motion of atoms is mapped out through the phase shift of light without perturbing the external and internal state of the atoms. Our results can be used to construct a continuous motional sensor of cold atoms.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Yan-Cheng Wei ◽  
Bo-Han Wu ◽  
Ya-Fen Hsiao ◽  
Pin-Ju Tsai ◽  
Ying-Cheng Chen

Sign in / Sign up

Export Citation Format

Share Document