Coupled anisotropic plasticity-ductile damage: Modeling, experimental verification, and application to sheet metal forming simulation

2019 ◽  
Vol 150 ◽  
pp. 548-560 ◽  
Author(s):  
O. Ghorbel ◽  
J. Mars ◽  
S. Koubaa ◽  
M. Wali ◽  
F. Dammak
2007 ◽  
Vol 2007.15 (0) ◽  
pp. 231-232
Author(s):  
Takayuki HAMA ◽  
Cristian TEODOSIU ◽  
Akitake MAKINOUCHI ◽  
Hirohiko TAKUDA

2014 ◽  
Vol 626 ◽  
pp. 518-523
Author(s):  
C.P. Lai ◽  
Luen Chow Chan

The titanium tailor-welded blanks (Ti-TWBs) are being developed in different industries such as automobile and aerospace, combining the advantages of both tailor-welded blanks technology and titanium alloys. In recent decades, computer simulation of sheet metal forming processes has been employed increasingly over conventional production test and adjustment methodology to achieve the optimum and cost-effective operation procedures. Recently, certain amounts of theoretical analysis for the sheet metal forming process have been developed. However, these analyses could not be applied directly to the material under multi-stage forming process. Thus, some researchers have developed a damage-based model to predict the instability and failure of sheet metals, particularly for the above Ti-TWBs, with consideration of material damage under discontinuous or proportional loading strain paths. So far this model has been used and proved to be successful to predict formability of selected sheets of steel and aluminium alloy. However, the application of the damage-coupled model has yet to be extended to the Ti-TWBs under thermal multi-stage forming operation.The main objective of this paper is to investigate numerically the formability of Ti-TWBs under multi-stage forming process with experimental verification. Titanium alloy sheets (Ti-6Al-4V) in thickness of 0.7mm and 1.0mm were selected and laser-welded the specimen of Ti-TWBs. The model based on the damage mechanics is introduced to predict the thermal formability of Ti-TWBs with change of strain paths. In this study, the anisotropic damage model incorporate with the finite element codes and user-define material subroutine were developed to predict the formability of Ti-TWBs with change of strain paths. The mechanical properties and damage parameters of Ti-TWBs for the simulation were measured experimentally. The simulation of Ti-TWB under multi-stage forming process were then conducted and validated experimentally at similar forming conditions. The predicted results have been found to agree well with those obtained from the experiments. This analysis can be applied readily to design and manufacture TWB components or structures so as to satisfy the need of such market demands.


2011 ◽  
Vol 347-353 ◽  
pp. 3939-3945
Author(s):  
Jin Yan Wang ◽  
Ji Xian Sun

In most FEM codes, the isotropic-elastic & transversely anisotropic-elastoplastic model using Hill's yield function has been widely adopted in 3D shell elements (modified to meet the plane stress condition) and 3D solid elements. However, when the 4-node quadrilateral plane strain or axisymmetric element is used for 2D sheet metal forming simulation, the above transversely anisotropic Hill model is not available in some FEM code like Ls-Dyna. A novel approach for explicit analysis of transversely anisotropic 2D sheet metal forming using 6-component Barlat yield function is elaborated in detail in this paper, the related formula between the material anisotropic coefficients in Barlat yield function and the Lankford parameters are derived directly. Numerical 2D results obtained from the novel approach fit well with the 3D solution .


2006 ◽  
Vol 42 (13) ◽  
pp. 1137-1149 ◽  
Author(s):  
M.P.L. Parente ◽  
R.A. Fontes Valente ◽  
R.M. Natal Jorge ◽  
R.P.R. Cardoso ◽  
R.J. Alves de Sousa

Sign in / Sign up

Export Citation Format

Share Document