ductile damage
Recently Published Documents


TOTAL DOCUMENTS

467
(FIVE YEARS 88)

H-INDEX

34
(FIVE YEARS 6)

Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 981-994
Author(s):  
YIFAN LIU ◽  
ZIYIN YAO ◽  
FEIBIN WANG ◽  
HUI HUANG ◽  
ZELI QUE

The effects of edge distances on stiffness in glulam connections with inclined self-tapping screws were studied in this paper. Under four anchorage angles (A-45°, A-60°, A-75°, A-90°) and three edge distances (EG-2D, EG-4D, EG-6D) conditions, the shear-tension tests were carried out on the timber structure connections with inclined self-tapping screws, and the stiffness and other properties of the connections were tested. Based on the results, the effects of edge distances on stiffness in joints were quantified using the equivalent energy elastic-plastic (EEEP) model. The results showed that the edge distances had a certain impact on the yield mode and load-carrying performance of the joints. Within a certain range of variation, as the edge distance increased, the stiffness of the connections increased gradually, showing a positive correlation. The stiffness of specimen EG-2D is 4.41 kN·mm-1. The stiffness of specimen EG-4D is 10.04 kN·mm-1, which increasesby 128% compared with the specimen EG-2D. The stiffness of specimen EG-6D is 12.08 kN·mm-1, which increases by 174% compared with the specimen EG-2D. However, the ductility coefficient, yielding load, and energy dissipatinghave no significant change. Within a reasonable edge distance, only ductile damage occurred.


2021 ◽  
pp. 105678952110617
Author(s):  
Jérémy Serveaux ◽  
Carl Labergere ◽  
Frédéric Bumbieler ◽  
Khémais Saanouni

Andra, the French national radioactive waste management agency, is in charge of studying the disposal of high-level and long-lived intermediate-level waste (HLW and ILW-LL) in a deep geological repository. According to the reference concept, it is planned to encapsulate high-level waste in non-alloy P285NH steel overpacks before inserting them into horizontal steel cased micro-tunnels. This work is a part of the study about the long-term behavior of a welded steel overpack subjected to external hydrostatic pressure and several localized loading paths. Indeed, the main objective of this work is to develop the most suitable model for non-alloy steel P285NH to be used in the prediction of the long-term overpack behavior. Dealing with a ductile steel, elastoplastic constitutive equations accounting for mixed nonlinear isotropic and kinematic hardening strongly coupled with ductile isotropic damage are adopted. They are formulated based on the classical thermodynamics of irreversible processes framework with state variables at the macroscopic scale, (Germain, 1973) (Lemaitre 1985, Saanouni 2012). In this paper, a new coupling formulation between the scalar isotropic ductile damage and the deviatoric and spherical part of the Cauchy stress and elastic strain tensors is proposed. In order to calibrate the developed model on P285NH steel, multiple tensile tests are performed using classical cylindrical specimens, notched specimens and double notched specimens. In the last part, some experimental fields are measured using digital image correlation. Application is made to a simplified overpack represented by thick walled cylinder subject to compressive loading path. A FEM (Finite Element method) crushing operation of an overpack’s cylindrical part has simulated and analysed.


Nature ◽  
2021 ◽  
Vol 599 (7884) ◽  
pp. 245-250
Author(s):  
T. V. Gerya ◽  
D. Bercovici ◽  
T. W. Becker
Keyword(s):  

Author(s):  
Ayush Morchhale ◽  
Nitin Kotkunde ◽  
Swadesh Kumar Singh ◽  
Navneet Khanna

The fracture forming limit diagram (FFLD) is gaining special attention in high strength materials where the necking tendency rarely occurs during sheet metal forming processes. In the present work, the classical Marciniak and Kuczyński (MK) model has been modified by coupling it with different ductile damage models (Cockcroft and Latham, Brozzo, Oyane, Ko, Oh, Rice and Tracey, McClintock and Clift) and anisotropic yielding functions (Hill 1948 and Barlat 1989) to predict the fracture limits of Inconel 625 (IN625) alloy at different temperatures. Firstly, uniaxial tensile testing has been conducted for the determination of important mechanical properties. Consequently, stretch forming experiments have been performed to analyze the forming limits of a material. It has been found that the safe and fracture forming limits of the material increased by approximately 17.26% and 22.22%, respectively, on increasing the temperature from 300 to 673 K. From the comparative analysis of different combinations of ductile damage models and yielding functions, the Cockcroft and Latham (C-L) damage model in combination with the Barlat 1989 yielding function helped in best predicting the theoretical FFLD as it displayed the least average root mean square error (RMSE) of 0.033. The other ductile damage models used for predicting the theoretical fracture limits displayed large error; hence, they should not be considered while designing a critical component in the manufacturing industry using IN625 alloy.


Brodogradnja ◽  
2021 ◽  
Vol 72 (4) ◽  
pp. 121-139
Author(s):  
Jurica Sorić ◽  
◽  
Tomislav Lesičar ◽  
Filip Putar ◽  
Zdenko Tonković ◽  
...  

An overview of the modelling of quasi-brittle as well as ductile damage is given. The multiscale procedure employing the nonlocal continuum theory is described in more detail. The softening is introduced at the microlevel in the microstructural volume element and after that the homogenization procedure state variables are mapped at the macrolevel material point via the scale transition approach. In the case of quasi-brittle softening the C1 continuous finite element discretization is applied at both micro- and macrolevel. At the modelling of ductile damage response, the macrolevel is also discretized by the C1 finite element formulation, while the microscale utilizes quadrilateral mixed finite elements employing the nonlocal equivalent plastic strain and gradient-enhanced elastoplasticity. All approaches presented are verified in the standard examples.


2021 ◽  
Vol 15 (58) ◽  
pp. 231-241
Author(s):  
Amina Ismahène Fezazi ◽  
Belaïd Mechab ◽  
Salem Mokadem ◽  
Boualem Serier

This study presents a numerical prediction of the ductile damage for axial cracks in pipe subjected to internal pressure. The three dimensional finite element methods used to evaluate the J-integral. The effect of the external radius (Rext),the thickness (t), length crack (a) , the applied loads (P) and the crack position of the pipes has studied. The Monte Carlo method was used to determine the probabilistic characteristics of the J-integral. It’s also used later to predict the failure probability based on initiation of the crack growth. We note that the crack size and the geometries of the pipe are an important factor influencing on the durability of the pipe.


Sign in / Sign up

Export Citation Format

Share Document