scholarly journals An advanced elastoplastic framework accounting for induced plastic anisotropy fully coupled with ductile damage

Author(s):  
J. Paux ◽  
M. Ben Bettaieb ◽  
H. Badreddine ◽  
F. Abed-Meraim ◽  
C. Labergere ◽  
...  
2020 ◽  
pp. 105678952095804
Author(s):  
Kai Zhang ◽  
Houssem Badreddine ◽  
Naila Hfaiedh ◽  
Khemais Saanouni ◽  
Jianlin Liu

This paper deals with the prediction of ductile damage based on CDM approach fully coupled with advanced elastoplastic constitutive equations. This fully coupled damage model is developed based on the total energy equivalence assumption under the thermodynamics of irreversible processes framework with state variables. In this model, the damage evolution is enhanced by accounting for both stress triaxiality and Lode angle. The proposed constitutive equations are implemented into Finite Element (FE) code ABAQUS/Explicit through a user material subroutine (VUMAT). The material parameters are determined by the hybrid experimental-numerical method using various tensile and shear tests. Validation of the proposed model has been done using different tests of two aluminum alloys (Al6061-T6 and Al6014-T4). Through comparisons of numerical simulations with experimental results for different loading paths, the predictive capabilities of the proposed model have been shown. The model is found to be able to capture the initiation as well as propagation of macro-crack in sheet and bulk metals during their forming processes.


2014 ◽  
Vol 81 ◽  
pp. 1234-1239 ◽  
Author(s):  
Zhenming Yue ◽  
Houssem Badreddine ◽  
Khemais Saanouni

Author(s):  
K. Saanouni ◽  
H. Badreddine ◽  
M. Ajmal

An advanced numerical methodology to simulate virtually any sheet or bulk metal forming including various kinds of initial and induced anisotropies fully coupled to the isotropic ductile damage is presented. First, the fully coupled anisotropic constitutive equations in the framework of continuum damage mechanics under large plastic deformation are presented. Special care is paid to the strong coupling between the main mechanical fields such as elastoplasticity, mixed nonlinear isotropic and kinematic hardenings, ductile isotropic damage, and contact with friction in the framework of nonassociative and non-normal formulation. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined, thanks to the Newton iterative scheme applied to a reduced system of ordinary differential equations. For the global resolution of the equilibrium problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. This fully coupled procedure is implemented into the general purpose finite element code for metal forming simulation, namely, ABAQUS/EXPLICIT. This gives a powerful numerical tool for virtual optimization of metal forming processes before their physical realization. This optimization with respect to the ductile damage occurrence can be made either to avoid the damage occurrence to have a nondamaged part as in forging, stamping, deep drawing, etc., or to favor the damage initiation and growth for some metal cutting processes as in blanking, guillotining, or machining by chip formation. Two 3D examples concerning the sheet metal forming are given in order to show the capability of the proposed methodology to predict the damage initiation and growth during metal forming processes.


Sign in / Sign up

Export Citation Format

Share Document