A new concept of backfill design—Application of wick drains in backfilled stopes

2013 ◽  
Vol 23 (5) ◽  
pp. 763-770 ◽  
Author(s):  
Li Li
2018 ◽  
Vol 55 (6) ◽  
pp. 810-828 ◽  
Author(s):  
Abtin Jahanbakhshzadeh ◽  
Michel Aubertin ◽  
Li Li

Backfill is commonly used world-wide in underground mines to improve ground stability and reduce solid waste disposal on the surface. Practical solutions are required to assess the stress state in the backfilled stopes, as the stress state is influenced by the fill settlement that produces a stress transfer to the adjacent rock walls. The majority of existing analytical and numerical solutions for the stresses in backfilled openings were developed for two-dimensional (plane strain) conditions. In reality, mine stopes have a limited extension in the horizontal plane so the stresses are influenced by the four walls. This paper presents recent three-dimensional (3D) simulations results and a new 3D closed-form solution for the vertical and horizontal stresses in inclined backfilled stopes with parallel walls. This solution takes into account the variation of the stresses along the opening width and height, for various inclination angles and fills properties. The numerical results are used to validate the analytical solution and illustrate how the stress state varies along the opening height, length, and width, for different opening sizes and inclination angles of the footwall and hanging wall. Experimental results are also used to assess the validity of the proposed solution.


Author(s):  
Paul M. Santi ◽  
C. Dale Elifrits ◽  
James A. Liljegren

2009 ◽  
Vol 46 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Li Li ◽  
Michel Aubertin

This paper presents a method to calculate the pressure generated by submerged backfill on barricades (or bulkheads) located in drifts at the base of mine stopes. The paper complements Part I (see companion paper, this isue), which presents an analytical solution for the pressure on barricades when the backfill is in drained conditions (after the pore-water pressure has dissipated). The solution presented here applies shortly after backfill deposition, for undrained conditions. In this case, the effect of pore pressure cannot be neglected as it may be critical for the response of barricades. The solution is developed for totally or partly submerged backfill (with the water table at various elevations). Experimental testing and numerical modelling results are used to validate the proposed equations. Both numerical and analytical results show that the total pressure on barricades can be significantly increased by pore pressure, while the effective stress is decreased in the access drifts (compared to dry or drained conditions). The proposed solution provides a simple method to obtain a realistic estimate of the total and effective stresses, and can thus be used as a basis for barricade design.


Sign in / Sign up

Export Citation Format

Share Document