Experimental study of the flat plate pulsating heat pipe operation during dry-out and flow re-activation periods under microgravity conditions

Author(s):  
Maksym Slobodeniuk ◽  
Remi Bertossi ◽  
Vincent Ayel ◽  
Rajalakshmi Ravichandran ◽  
Karthik Thyagarajan ◽  
...  
2015 ◽  
Vol 96 ◽  
pp. 23-34 ◽  
Author(s):  
V. Ayel ◽  
L. Araneo ◽  
A. Scalambra ◽  
M. Mameli ◽  
C. Romestant ◽  
...  

Cryogenics ◽  
2019 ◽  
Vol 97 ◽  
pp. 63-69 ◽  
Author(s):  
Xiao Sun ◽  
Sizhuo Li ◽  
Bo Jiao ◽  
Zhihua Gan ◽  
John Pfotenhauer

Author(s):  
Mitchell P. Hoesing ◽  
Gregory J. Michna

The ongoing development of faster and smaller electronic components has led to a need for new technologies to effectively dissipate waste thermal energy. The pulsating heat pipe (PHP) shows potential to meet this need, due to its high heat flux capacity, simplicity, and low cost. A 20-turn flat plate PHP was integrated into an aluminum flat plate heat sink with a simulated electronic load. The PHP heat sink used water as the working fluid and had 20 parallel channels with dimensions 2 mm × 2 mm × 119 mm. Experiments were run under various operating conditions, and thermal resistance of the PHP was calculated. The performance enhancement provided by the PHP was assessed by comparing the thermal resistance of the heat sink with no working fluid to that of it charged with water. Uncharged, the PHP was found to have a resistance of 1.97 K/W. Charged to a fill ratio of approximately 75% and oriented vertically, the PHP achieved a resistance of .49 K/W and .53 K/W when the condenser temperature was set to 20°C and 30°C, respectively. When the PHP was tilted to 45° above horizontal the PHP had a resistance of .76 K/W and .59 K/W when the condenser was set 20°C and 30°C, respectively. The PHP greatly improves the heat transfer properties of the heat sink compared to the aluminum plate alone. Additional considerations regarding flat plate PHP design are also presented.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 51724-51734 ◽  
Author(s):  
Hui Xu ◽  
Ping Zhang ◽  
Lipei Yan ◽  
Dehao Xu ◽  
Wei Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document