Quantification of coflow effects on primary atomization of pressure swirl atomizers

Author(s):  
Niklas Petry ◽  
Dominik Schäfer ◽  
Oliver Lammel ◽  
Fabian Hampp
Keyword(s):  
1991 ◽  
Vol 1 (2) ◽  
pp. 215-235 ◽  
Author(s):  
Chien-Pei Mao ◽  
S. G. Chuech ◽  
A. J. Przekwas
Keyword(s):  

1997 ◽  
Vol 7 (6) ◽  
pp. 663-684 ◽  
Author(s):  
Zhiyu Han ◽  
Scott Parrish ◽  
Patrick V. Farrell ◽  
Rolf D. Reitz

1996 ◽  
Vol 6 (4) ◽  
pp. 377-408 ◽  
Author(s):  
Cesar Dopazo ◽  
Javier Ballester
Keyword(s):  

2007 ◽  
Vol 17 (6) ◽  
pp. 529-550 ◽  
Author(s):  
Seoksu Moon ◽  
Choongsik Bae ◽  
Essam F. Abo-Serie ◽  
Jaejoon Choi

Author(s):  
Gustavo Alexandre Achilles Fischer ◽  
JOSE CARLOS ANDRADE ◽  
FERNANDO COSTA

2020 ◽  
Vol 32 (12) ◽  
pp. 127113
Author(s):  
Kiumars Khani Aminjan ◽  
Balaram Kundu ◽  
D. D. Ganji

2017 ◽  
Vol 42 (29) ◽  
pp. 18649-18657 ◽  
Author(s):  
Zhilin Liu ◽  
Yong Huang ◽  
Lei Sun

Author(s):  
Ahmadreza Abbasi Baharanchi ◽  
Seckin Gokaltun ◽  
Shahla Eshraghi

VOF Multiphase model is used to simulate the flow inside a pressure-swirl-atomizer. The capability of the Reynolds Stress Model and variants of the K-ε and K-ω models in modeling of turbulence has been investigated in the commercial computational fluid dynamics (CFD) software FLUENT 6.3. The Implicit scheme available in the volume-of-fluid (VOF) model is used to calculate the interface representation between phases. The atomization characteristics have been investigated as well as the influence of the inlet swirl strength of the internal flow. The numerical results have been successfully validated against experimental data available for the computed parameters. The performance of the RNG K-ε model was found to be satisfactory in reducing the computational cost and introducing an effective Weber number for the flow simulated in this study.


Author(s):  
Anurag Tiwari ◽  
Siddharth Sharma ◽  
Vivek Kumar Srivastav ◽  
Anuj Jain ◽  
Akshoy Ranjan Paul

Respiratory drug delivery has been under the spotlight of research for the past few decades, mainly due to rapid increase of pulmonary diseases. This type of drug delivery offers the highest efficiency for treatment. Despite its numerous benefits, there are some drawbacks in the method of respiratory drug delivery-the most important being poor delivery efficiency and high drug deposition in undesirable regions, such as the oropharynx. This study is focused on improving pressurized inhaler device, which is one of the most used devices for inhalation therapy throughout the world using the results and findings obtained from numerical analysis. In this study, three atomizer models are investigated and found that pressure swirl atomizer model closely represents the atomization phenomenon from a pressurized inhaler device. Parametric study is carried out using three parameters: nozzle diameter, dispersion angle and sheet constant to optimize the performance of the device. It is revealed that a reduction in nozzle diameter and dispersion angle help in generating fine (smaller diameter) particles, whereas increase in sheet constant is responsible for fine particle production. The values of nozzle diameter, dispersion angle and sheet constant are tuned to get the particles with minimum diameter as output which is desirable for the drug particles to get deposited in the smaller airways of lungs and increase the efficiency of drug delivery and improve the device performance.


Author(s):  
Shaji S. Manipurath

The development of higher thermal stability fuels and the development of onboard fuel deoxygenation systems may permit the preheating of fuel up to about 755 K before the onset of pyrolysis. At a sufficiently high fuel temperature for a given combustion chamber pressure, the flash vaporization of liquid or supercritical state fuel can ensue upon injection into the chamber. The performance of standard aviation turbine engine fuel nozzles, designed for mechanically breaking up liquid sprays, may thus be significantly altered by the employment of severely preheated fuel. An evaluation of heated and superheated Jet A-1 sprays from a pressure-swirl atomizer was implemented in a purpose-built test facility. Laser sheet imaging of the spray yielded simultaneous axial cross-sectional maps of Mie-scatter and fluorescence signals. In addition, particle image velocimetry was also used to measure the spray droplet velocity-field. The results indicated that increasing the fuel’s dimensionless level of superheat ΔT* from −1.8 to 0.6 yielded significant changes in the spray structure; specifically, finer droplet sizes, a more uniform dropsize distribution across the spray, increased spray cone angle till about ΔT* = −0.8 followed by a contraction thereafter, marginally increased spray penetration, and significantly higher localised near nozzle tip droplet velocities. The measurements supported the hypothesis that the initial hollow-cone spray structure evolves to a near solid-cone structure with a central vapour core as the fuel is superheated.


Sign in / Sign up

Export Citation Format

Share Document