Volume 7A: Fluids Engineering Systems and Technologies
Latest Publications


TOTAL DOCUMENTS

71
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791856314

Author(s):  
J. R. Tucker ◽  
L. J. Shadle ◽  
S. Benyahia ◽  
J. Mei ◽  
C. Guenther ◽  
...  

Useful prediction of the kinematics, dynamics, and chemistry of a system relies on precision and accuracy in the quantification of component properties, operating mechanisms, and collected data. In an attempt to emphasize, rather than gloss over, the benefit of proper characterization to fundamental investigations of multiphase systems incorporating solid particles, a set of procedures were developed and implemented for the purpose of providing a revised methodology having the desirable attributes of reduced uncertainty, expanded relevance and detail, and higher throughput. Better, faster, cheaper characterization of multiphase systems result. Methodologies are presented to characterize particle size, shape, size distribution, density (particle, skeletal and bulk), minimum fluidization velocity, void fraction, particle porosity, and assignment within the Geldart Classification. A novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Accuracy of properties-characterization methodology was validated on materials of known properties prior to testing materials of unknown properties. Several of the standard present-day techniques were scrutinized and improved upon where appropriate. Validity, accuracy, and repeatability were assessed for the procedures presented and deemed higher than present-day techniques. A database of over seventy materials has been developed to assist in model validation efforts and future designs.


Author(s):  
Seyyed Mahdi Nemati Mehr ◽  
Salman Sohrabi ◽  
Pedram Falsafi ◽  
Paniz Gorji

In this paper we developed a new mathematical model for the flow inside cascade impactors and via this simplified model, we determined the particle size distribution by a fast and low cost computational method. Using cascade impactors for determining the particle size distribution, one can use comprehensive CFD methods to fully simulate the particle traces. Although the results from those CFD analyses can be very accurate, usually that is not a time and cost efficient routine. In contrast, we showed that by using our proposed calculation we can estimate the particle size distribution very fast and yet with the slight error — comparing to the results from CFD method. Cascade impactors are being used to measure the range of substances moving through an opening and determine the particle size of distributed substances. Air flow containing aerosol entering in each stage, after colliding vertically with a plate will deviate 90 degrees from its original direction. Larger (massive) particles cannot follow the flow because of their larger linear momentum. Hence, they will deviate from the flow and deposit on the plate instead. The mass difference before and after the experiment represents the deposited mass in each stage. By integrating multiple uniquely designed stages into one impactor, we can determine size of particles in the flow. Typical cascade impactors consist of up to ten stages in which different size of aerosols are being separated. This paper presents a simple model for the flow in one single stage of a cascade impactor. Flow inside cascade impactor is approximated by stagnation point potential flow with the stream function of Psi = Axy, and particles are tracked by velocity verlet algorithm. Absorbed particles are associated with unit value; otherwise they are associated with zero. It is assumed that particles in entrance have random size distribution and location. Drag, Saffman and Brownian forces are taken into account in this model for different particle sizes. The results are discussed in detail and compared with data driven from different approaches in the literature.


Author(s):  
Bahareh Estejab ◽  
Francine Battaglia

In an effort to assess the fluidization characteristics of coal-biomass mixtures, computational fluid dynamics (CFD) was used and validated. The gas and solids phases were modeled using an Eulerian-Eulerian approach to efficiently simulate the physics. The computational platform Multiphase Flow with Interphase eXchanges (MFIX) was employed to simulate the particle-particle interactions of coal-biomass mixtures and compare the predictions with experimental data. The coal-biomass mixtures included sub-bituminous coal and hybrid poplar wood. Particles properties of both materials fall within the Geldart A classification. Of particular interest to this study was predicting particle mixing in fluidized beds and biomass hydrodynamics. Both materials and two mass ratio mixtures were studied and pressure drop across the bed for various gas inlet velocities and bed height were analyzed and compared to the experiments.


Author(s):  
Shriram Pillapakkam ◽  
N. A. Musunuri ◽  
P. Singh

In this paper, we present a technique for freezing monolayers of micron and sub-micron sized particles onto the surface of a flexible thin film after the self-assembly of a particle monolayer on fluid-liquid interfaces has been improved by the process we have developed where an electric field is applied in the direction normal to the interface. Particles smaller than about 10 microns do not self-assemble under the action of lateral capillary forces alone since capillary forces amongst them are small compared to Brownian forces. We have overcome this problem by applying an electric field in the direction normal to the interface which gives rise to dipoledipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another liquid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.


Author(s):  
Ahmadreza Abbasi Baharanchi ◽  
Seckin Gokaltun ◽  
Shahla Eshraghi

VOF Multiphase model is used to simulate the flow inside a pressure-swirl-atomizer. The capability of the Reynolds Stress Model and variants of the K-ε and K-ω models in modeling of turbulence has been investigated in the commercial computational fluid dynamics (CFD) software FLUENT 6.3. The Implicit scheme available in the volume-of-fluid (VOF) model is used to calculate the interface representation between phases. The atomization characteristics have been investigated as well as the influence of the inlet swirl strength of the internal flow. The numerical results have been successfully validated against experimental data available for the computed parameters. The performance of the RNG K-ε model was found to be satisfactory in reducing the computational cost and introducing an effective Weber number for the flow simulated in this study.


Author(s):  
Eiji Ishii ◽  
Taisuke Sugii

Predicting the spreading behavior of droplets on a wall is important for designing micro/nano devices used for reagent dispensation in micro-electro-mechanical systems, printing processes of ink-jet printers, and condensation of droplets on a wall during spray forming in atomizers. Particle methods are useful for simulating the behavior of many droplets generated by micro/nano devices in practical computational time; the motion of each droplet is simulated using a group of particles, and no particles are assigned in the gas region if interactions between the droplets and gas are weak. Furthermore, liquid-gas interfaces obtained from the particle method remain sharp by using the Lagrangian description. However, conventional surface tension models used in the particle methods are used for predicting the static contact angle at a three-phase interface, not for predicting the dynamic contact angle. The dynamic contact angle defines the shape of a spreading droplet on a wall. We previously developed a surface tension model using inter-particle force in the particle method; the static contact angle of droplets on the wall was verified at various contact angles, and the heights of droplets agreed well with those obtained theoretically. In this study, we applied our surface tension model to the simulation of a spreading droplet on a wall. The simulated dynamic contact angles for some Weber numbers were compared with those measured by Šikalo et al, and they agreed well. Our surface tension model was useful for simulating droplet motion under static and dynamic conditions.


Author(s):  
Moonho Choi ◽  
Sungwon Lee ◽  
Jin-Ki Ham

Granular model, a part of Eulerian-Eulerian approach is implemented to improve a gas-solid cyclone separator’s performances which are largely determined by dimensions of a vortex finder. Design-Of-Experiments method analyzes the performances such as pressure loss, separation efficiency, and erosion rate of each variation model due to the change of design parameters of the vortex finder. Separation efficiencies due to the motion of solid particles are predicted according to the classical efficiency model by using the method of least square. The numerical results are validated by comparing with previously reported experimental data. The standard Stairmand design cyclone is improved judging from the reduced pressure loss by 43%, the reduced cut size by 63% and the reduced erosion rate by 2% by changing the position and the diameter of the vortex finder.


Author(s):  
R. Nandkeolyar ◽  
P. Sibanda ◽  
Md. S. Ansari

The combined effects of applied magnetic field, thermal radiation and suction on the flow and free convective heat transfer of a viscous, incompressible, electrically conducting dusty fluid past a flat plate with ramped temperature are studied. The governing partial differential equations for momentum and energy transfers, for both the fluid and particle phases, are solved using Laplace transform technique. The inverse Laplace transform is obtained numerically using Matlab. A comparison of Numerical solution and analytical solution for energy transfer is made which shows an excellent agreement. The effects of pertinent flow parameters are analyzed with the help of graphs and tables.


Author(s):  
Y. Asako ◽  
D. Kawashima ◽  
T. Yamada ◽  
C. Hong

The Mach number and pressure on the outlet plane of a straight micro-tube were investigated numerically for both laminar and turbulent flow cases. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian (ALE) method. The LB1 turbulence model was used for the turbulent flow case. The compressible momentum and energy equations with the assumption of the ideal gas were solved. The computational domain is extended to the downstream region from the micro-tube outlet. The back pressure was given to the outside of the downstream region. The computations were performed for a tube whose diameter ranges from 50 to 500 μm. The average Mach number on the outlet plane of the fully under-expanded flow depends on the tube diameter and ranges from 1.16 to 1.25. The flow characteristics of the under-expanded gas flow in a straight micro-tube were revealed.


Author(s):  
Hojin Ahn ◽  
Ibrahim Uslu

The characteristics of pressure drop in corrugated pipes were experimentally studied in both straight and helically coiled configurations. The present study employed the stainless-steel pipes with the corrugation of circular cross section, which are widely used in boilers and pipe systems between solar panels and boilers. The diameters of corrugated pipes were 20.4, 25.4, 34.5 and 40.5 mm. The corrugated pipe, approximately 10 m in length, was configured either in the straight manner or in the helical coil with the helix diameter of 0.43 or 0.64 m. Water stored in a tank was fed into a corrugated pipe by a pump while the flow rate was controlled by a control valve. The friction factors of the pipes remain constant over the range of Reynolds number from 4,000 to 50,000, indicating that the flow in the pipe was fully turbulent. When the pipe was straightly configured, the friction factors were measured to be 0.070, 0.075, 0.12 and 0.22 for the diameter of 20.4, 25.4, 34.5 and 40.5 mm, respectively. Thus the present study showed that the friction factors increased with the increasing diameter of the pipe. This result is clearly contrary to a rare experimental result available in the literature. On the other hand, as expected, the friction factor for the helically coiled configuration was higher than that of the straight configuration with the same tube diameter, and the configuration of the smaller helix diameter yielded the larger friction factor. The reason for the increasing friction factor with the increasing pipe diameter remains to be explored further.


Sign in / Sign up

Export Citation Format

Share Document