swirl atomizer
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 44)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 6 (7) ◽  
pp. 69-76
Author(s):  
Sherry K. Amedorme ◽  
Joseph Apodi

Liquid atomization is crucial to ensure efficient combustion as it is an inherent part of the injector system. The combustion of fuels relies on effective atomization to increase the surface area of the fuel and consequently achieve high rates of mixing and evaporation. Pressure swirl atomizers are inexpensive and reliable type of atomizer for fuel injection owing to its superior atomization characteristics and relatively simple geometry. The Sauter mean diameter (SMD) of atomizer contributes significantly to the combustion chamber performance. This paper presents a two-step strategy to predict droplet SMD for atomisation model in pressure swirl atomizer through the combination of experimentally validated Computation Fluid Dynamics (CFD) and Optimal Latin Hypercubes (OLHC) Design of Experiments (DoE) techniques. A three-dimensional Eulerian two-phase CFD model is developed to account for liquid and gas phases as a single continuum with high-density variation at large Reynolds and Weber numbers and validated against experimental measurements, before being employed to carry out a parametric study involving operating conditions and fluid properties of the pressure swirl atomizer. The atomizer is then represented in terms of four design variables, namely liquid viscosity, liquid velocity, surface tension and atomizer exit diameter. An 87-point OLHC DoE is constructed within the design variables space using a permutation genetic algorithm resulting in an accurate SMD prediction. Results show the newly developed SMD prediction is found to be superior compared with existing correlations and indicate significant improvement in the droplets SMD.


2021 ◽  
Vol 33 (9) ◽  
pp. 093305
Author(s):  
Kiumars Khani Aminjan ◽  
Milad Heidari ◽  
D. D. Ganji ◽  
Maryam Aliakbari ◽  
Fatemeh Salehi ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Milan Maly ◽  
Jaroslav Slama ◽  
Ondřej Cejpek ◽  
Jan Jedelský

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Dilyan Kamenov ◽  
Lydia Achelis ◽  
Volker Uhlenwinkel ◽  
Udo Fritsching

Author(s):  
Mazyar Shafaee ◽  
Abbas Elkaie ◽  
Mohammad Amin Hassani

Full-cone spray is quite important in spray cooling and catalytic combustion applications; however, it is not extensively studied. Besides, the liquid spray is relatively a non-uniform structure especially along longitudinal axis which includes different sizes and distribution of droplets. The few published experimental studies are limited to calculate some of the spray characteristics on a certain plane located downstream of the nozzle exit. Therefore, the spray parameters representing fluid structure, droplets mean diameter, and their distribution in different cross sections from nozzle exit are considered in this study. Accordingly, a jet-swirl atomizer with pressure-swirl full-cone spray is investigated where all important full-cone spray characteristics are considered at different planes from nozzle exit. The spray images are obtained with a shadowgraph technique and are analyzed to obtain the Sauter mean diameter (SMD), D10, and droplet size distribution along with the spray structure, spray cone angle, and discharge coefficient. The experimental results are verified based on the pre-published numerical studies on the same atomizer. The experimental and numerical results show good agreement. Moreover, the results show that the SMD is increased by moving away from center of spray to its edges, and the droplets number density is increased in central regions. The increased droplets number density leads to the greater external forces which create smaller droplets. In contrast, larger particles exist in peripheral parts due to the less droplets concentration. Furthermore, and far away from the exit nozzle, the SMD values are decreased due to the increased aerodynamic forces and oscillations. The droplets dispersion including spray density in radial and axial directions is also observed using spray density images.


Author(s):  
Zulkifli Abdul Ghaffar ◽  
Salmiah Kasolang ◽  
Ahmad Hussein Abdul Hamid

A widely distributed spray is an important feature for an atomizer which is required in various applications such as gas cooling, gas turbine combustion, and fluidized bed granulator. Pressure-swirl atomizer is an example of atomizer which provides a wide spray angle through the swirling effect inside the atomizer. One of the important parameters affecting spray angle is atomizer geometrical constant, K. Another important parameter of pressure-swirl atomizer is discharge coefficient, Cd. Discharge coefficient describes the throughput of the liquid flow. An experimental test-rig was constructed to conduct the performance test of the atomizer. Acquired images were analysed using image-processing software. It was found that K has inverse relation with spray angle and direct relation with Cd. Prediction of spray angle and Cd using existing correlations also yields similar trends with the experimental results, but some parameters still need to be considered to perform an accurate prediction.


Sign in / Sign up

Export Citation Format

Share Document