drop size
Recently Published Documents


TOTAL DOCUMENTS

1513
(FIVE YEARS 176)

H-INDEX

73
(FIVE YEARS 5)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
Miguel Panão

In particle engineering, spray drying is an essential technique that depends on producing sprays, ideally made of equal-sized droplets. Ultrasonic sprays appear to be the best option to achieve it, and Faraday waves are the background mechanism of ultrasonic atomization. The characterization of sprays in this atomization strategy is commonly related to the relation between characteristic drop sizes and the capillary length produced by the forcing frequency of wavy patterns on thin liquid films. However, although this atomization approach is practical when the intended outcome is to produce sprays with droplets of the same size, drop sizes are diverse in real applications. Therefore, adequate characterization of drop size is paramount to establishing the relations between empirical approaches proposed in the literature and the outcome of ultrasonic atomization in actual operating conditions. In this sense, this work explores new approaches to spray characterization applied to ultrasonic sprays produced with different solvents. The first two introduced are the role of redundancy in drop size measurements to avoid resolution limitation in the measurement technique and compare using regular versus variable bin widths when building the histograms of drop size. Another spray characterization tool is the Drop Size Diversity to understand the limitations of characterizing ultrasonic sprays solely based on representative diameters or moments of drop size distributions. The results of ultrasonic spray characterization obtained emphasize: the lack of universality in the relation between a characteristic diameter and the capillary length associated with Faraday waves; the variability on drop size induced by both liquid properties and flow rate on the atomization outcome, namely, lower capillary lengths produce smaller droplets but less efficiently; the higher sensibility of the polydispersion and heterogeneity degrees in Drop Size Diversity when using variable bin widths to build the histograms of drop size; the higher drop size diversity for lower flow rates expressed by the presence of multiple clusters of droplets with similar characteristics leading to multimodal drop size distributions; and the gamma and log-normal mathematical probability functions are the ones that best describe the organization of drop size data in ultrasonic sprays.


MAUSAM ◽  
2021 ◽  
Vol 43 (4) ◽  
pp. 415-420
Author(s):  
S. K. PAUL ◽  
A. G . PILLAI

Measurements o f clo ud drop ..ire spectra on non-preci pitating cumulus clouds, 1·2 km thick,were made at differe nt levels o ver the Arabian Sea (maritime) and over r une (inland) regio n during the end ofthe summer monsoo n seasons of 1973, 1974 and 1979.The macimurn size of clo ud drops for the. Arabian Sea generally increased with height. while that for run eJiJ not show a systematic change with height. At bot h the local ions. the total concentration o f drops decreasedwith height. The maritime dist ributions were bimodal at all levels while those o..-er Punc were usually unimodal.The average values of liquid water content. mean vo lume diameter. dispersion and conccnt rarion of drops withdiameter > 50 «m were a lin le greater and total concentration a little smaller over the maritime region as ' om'pared to those over inland. The co ncentrations of drops with diameter < 14 ,...m and those > 78 I'm and thema ximum ~ i 7e were greater over Pune than o..er the sea. The ..'a riarions in cloud drop spectra and the clo udphysical parameters over beth the locations are discussed.Kc) words - Cloud drop size spectra, Drop co ncentration,


Abstract Using NOAA’s S-band High Power Snow-Level Radar, HPSLR, a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized Gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion, w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter, Dm, from the measured reflectivity, Z, produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, NC. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2242
Author(s):  
Andreas Håkansson

The fragmentation rate function connects the fundamental drop breakup process with the resulting drop size distribution and is central to understanding or modeling emulsification processes. There is a large interest in being able to reliably measure it from an emulsification experiment, both for generating data for validating theoretical fragmentation rate function suggestions and as a tool for studying emulsification processes. Consequently, several methods have been suggested for measuring fragmentation rates based on emulsion experiments. Typically, each study suggests a new method that is rarely used again. The lack of an agreement on a standard method has become a substantial challenge. This contribution critically and systematically analyses four influential suggestions of how to measure fragmentation rate in terms of validity, reliability, and sensitivity to method assumptions. The back-calculation method is identified as the most promising—high reliability and low sensitivity to assumption—whereas performing a non-linear regression on a parameterized model (as commonly suggested) is unsuitable due to its high sensitivity. The simplistic zero-order method is identified as an interesting supplemental tool that could be used for qualitative comparisons but not for quantification.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Natalia Prieto-Jiménez ◽  
José Fuentes ◽  
Germán González-Silva

A natural gas droplet is generated at certain thermodynamic conditions through three stages: supersaturation, where the gas has more molecules than it should have in equilibrium, forming “embryos” of liquid phase; nucleation, where embryos form groups of different shapes and sizes of nanometer order; and the droplet growth, where the number of molecules increases until equilibrium is reached. In this paper, the homogeneous nucleation and droplet growth of natural gas applied to gravitational separators operating at high pressure conditions (7MPa) are analyzed. The results showed that at a high pressure, the initial drop size reached was 8.024 nanometers and the final diameter of the drop was 4.18 micrometers.


2021 ◽  
Vol 13 (22) ◽  
pp. 4690
Author(s):  
Merhala Thurai ◽  
Viswanathan Bringi ◽  
David Wolff ◽  
David A. Marks ◽  
Patrick N. Gatlin ◽  
...  

A novel method for retrieving the moments of rain drop size distribution (DSD) from the dual-frequency precipitation radar (DPR) onboard the global precipitation mission satellite (GPM) is presented. The method involves the estimation of two chosen reference moments from two specific DPR products, namely the attenuation-corrected Ku-band radar reflectivity and (if made available) the specific attenuation at Ka-band. The reference moments are then combined with a function representing the underlying shape of the DSD based on the generalized gamma model. Simulations are performed to quantify the algorithm errors. The performance of methodology is assessed with two GPM-DPR overpass cases over disdrometer sites, one in Huntsville, Alabama and one in Delmarva peninsula, Virginia, both in the US. Results are promising and indicate that it is feasible to estimate DSD moments directly from DPR-based quantities.


2021 ◽  
Author(s):  
Harris Ramli ◽  
Siti Aimi Nadia Mohd Yusoff ◽  
Mastura Azmi ◽  
Nuridah Sabtu ◽  
Muhd Azril Hezmi

Abstract. It is difficult to define the hydrologic and hydraulic characteristics of rain for research purposes, especially when trying to replicate natural rainfall using artificial rain on a small laboratory scale model. The aim of this paper was to use a drip-type rainfall simulator to design, build, calibrate, and run a simulated rainfall. Rainfall intensities of 40, 60 and 80 mm/h were used to represent heavy rainfall events of 1-hour duration. Flour pellet methods were used to obtain the drop size distribution of the simulated rainfall. The results show that the average drop size for all investigated rainfall intensities ranges from 3.0–3.4 mm. The median value of the drop size distribution or known as D50 of simulated rainfall for 40, 60 and 80 mm/h are 3.4, 3.6, and 3.7 mm, respectively. Due to the comparatively low drop height (1.5 m), the terminal velocities monitored were between 63–75 % (8.45–8.65 m/s), which is lower than the value for natural rainfall with more than 90 % for terminal velocities. This condition also reduces rainfall kinetic energy of 25.88–28.51 J/m2mm compared to natural rainfall. This phenomenon is relatively common in portable rainfall simulators, representing the best exchange between all relevant rainfall parameters obtained with the given simulator set-up. Since the rainfall can be controlled, the erratic and unpredictable changeability of natural rainfall is eliminated. Emanating from the findings, drip-types rainfall simulator produces rainfall characteristics almost similar to natural rainfall-like characteristic is the main target.


Sign in / Sign up

Export Citation Format

Share Document